scholarly journals Research on Crystal Structure and Fungicidal Activity of the Amide Derivatives Based on the Natural Products Sinapic Acid and Mycophenolic Acid

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhanfang Chen ◽  
Hongbin Fang ◽  
Xuewen Hua ◽  
Wenrui Liu ◽  
Yi Liu ◽  
...  

Structural optimization based on natural products is an important and effective way to discover new green pesticides. Here, two series of amide derivatives based on sinapic acid and mycophenolic acid were designed in combination with the fungicidal natural product piperlongumine and synthesized by preparing the carboxylic acid into acyl chloride and then reacting with the corresponding aromatic amines, respectively. The resulting structures were successively characterized by 1H NMR, 13 C NMR, and HRMS. The crystal structures of molecules I-4 and II-5 were analyzed for structure validation. The in vitro inhibitory activity indicated that most of the target products exhibited fungicidal activity equivalent to or even better than fluopyram against Physalospora piricola. The in vivo fungicidal activity demonstrated that the compounds I-5 and II-4 displayed almost the same preventative activity as carbendazim and fluopyram at 200 μg mL−1. The TEM observation revealed that the fungicidal activity of the target molecules against Physalospora piricola may be due to the influence on the mitochondria in the cell structure. These results will provide valuable theoretical guidance for developing the new green fungicides.

2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


1975 ◽  
Author(s):  
E. G. D. Tuddenham ◽  
A. L. Bloom ◽  
J. C. Giddings ◽  
C. A. Barrett

The occurrence of factor VIII inhibitor in five mild or moderately affected liaemophilic patients is described. In four patients the inhibitor inactivated endogenous factor VIII an dtemporarily converted them to severely affected haemophiliacs with factor VIII level of 0%. In the fifth patient, a brother of one of the others, the inhibitor although more potent did not inactivate the patient’s own factor VIII and did not completely inactivate normal factor VIII in vitro. This patient responded to treatment with factor-VIII concentrate but the in-vivo recovery was reduced. The patient’s plasma was tested against a panel of normal donors but it inactivated factor VIII in each to a similar extent and no evidence for normal factor-VIII groups was obtained. In the other patients the response to replacement treatment was also better than that usually seen in severely affected haemophilic patients with inhibitor. In the two related patients the inhibitors have so far persisted but in the unrelated patients the inhibitors eventually disappeared and did not always recur with subsequent therapy. The incidence of factor- VIII inhibitor in less severe haemophiliacs (factor VIII > 3% ) in this centre is 6% suggesting that the complication is more frequent in this type of patient than hitherto recognised.


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pia Montanucci ◽  
Silvia Terenzi ◽  
Claudio Santi ◽  
Ilaria Pennoni ◽  
Vittorio Bini ◽  
...  

Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation,in vitroandin vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.


2012 ◽  
Vol 16 (01) ◽  
pp. 114-121 ◽  
Author(s):  
Tapan K. Saha ◽  
Yutaka Yoshikawa ◽  
Hirouki Yasui ◽  
Hiromu Sakurai

We prepared [meso-tetrakis(4-carboxylatophenyl)porphyrinato]oxovanadium(IV) tetrasodium, ([VO(tcpp)]Na4), and investigated its in vitro insulin-mimetic activity and in vivo metallokinetic feature in healthy rats. The results were compared with those of previously proposed insulin-mimetic oxovanadium(IV)porphyrin complexes and oxovanadium(IV) sulphate. The in vitro insulin-mimetic activity and bioavailability of [VO(tcpp)]Na4 were considerably better than those of [meso-tetrakis (1-methylpyridinium-4-yl)porphyrinato]oxovanadium(IV)(4+) tetraperchlorate ([VO(tmpyp)](ClO4)4) and oxovanadium(IV) sulphate. On the other hand, [VO(tcpp)]Na4 and [meso-tetrakis(4-sulfonatophenyl) porphyrinato]oxidovanadate(IV)(4-)([VO(tpps)]) showed very similar in vitro insulin-mimetic activity and in vivo metallokinetic feature in healthy rats. In particular, the order of in vitro insulin-mimetic activity of the complexes was determined to be: [VO(tcpp)]Na4 ≈ [VO(tpps)] > ([VO(tmpyp)](ClO4)4 > oxovanadium(IV) sulphate.


Author(s):  
Nithya R ◽  
Subramanian S

Objective: This study was aimed to evaluate the antioxidant potential of sinapic acid in both in vitro and in vivo. Recently, we have reported that oral administration of sinapic acid (3,5-dimethoxy 4-hydroxycinnamic acid) an active phyto ingredient widely distributed in rye, mustard, berries, and vegetables has been shown to ameliorate hyperglycemia.Methods: Experimental Type 2 diabetes was induced in male Wistar rats by feeding high-fat diet to induce insulin resistance followed by intraperitoneal administration of a single low dose streptozotocin (35 mg/kg body weight [bw]). Sinapic acid was administered orally at a concentration of 25 mg/kg bw/rat/day for 30 days, and its efficacy was compared with metformin. In vitro, antioxidant scavenging properties of sinapic acid were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), superoxide, and nitric oxide (NO) assay.Results: Sinapic acid treatment showed a significant decline in the levels of lipid peroxides, hydroperoxides and protein carbonyls in the plasma and vital tissues of diabetic rats. The treatment also improved the antioxidant status in diabetic rats indicating the antioxidant potential of sinapic acid. In addition, the results of DPPH, ABTS, superoxide, and NO radical scavenging assays substantiate the free radical scavenging efficacy of sinapic acid.Conclusion: The results of this study evidenced that sinapic acid possess significant antioxidant properties which in turn may be responsible for its antidiabetic properties.


Sign in / Sign up

Export Citation Format

Share Document