scholarly journals A Method for Detecting Incipient Faults in Satellites Based on Dynamic Linear Discriminant Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ge Zhang ◽  
Qiong Yang ◽  
Guotong Li ◽  
Jiaxing Leng

Timely detection and treatment of possible incipient faults in satellites will effectively reduce the damage and harm they could cause. Although much work has been done concerning fault detection problems, the related questions about satellite incipient faults are little addressed. In this paper, a new satellite incipient fault detection method was proposed by combining the ideas of deviation in unsupervised fault detection methods and classification in supervised fault detection methods. First, the proposed method uses dynamic linear discriminant analysis (LDA) to find an optimal projection vector that separates the in-orbit data from the normal historical data as much as possible. Second, under the assumption that the parameters obey a multidimensional Gaussian distribution, it applies the normal historical data and the optimal projection vector to build a normal model. Finally, it employs the noncentral F-distribution to test whether a fault has occurred. The proposed method was validated using a numerical simulation case and a real satellite fault case. The results show that the method proposed in this paper is more effective at detecting incipient faults than traditional methods.

2020 ◽  
Vol 16 (8) ◽  
pp. 1079-1087
Author(s):  
Jorgelina Z. Heredia ◽  
Carlos A. Moldes ◽  
Raúl A. Gil ◽  
José M. Camiña

Background: The elemental composition of maize grains depends on the soil, land and environment characteristics where the crop grows. These effects are important to evaluate the availability of nutrients with complex dynamics, such as the concentration of macro and micronutrients in soils, which can vary according to different topographies. There is available scarce information about the influence of topographic characteristics (upland and lowland) where culture is developed with the mineral composition of crop products, in the present case, maize seeds. On the other hand, the study of the topographic effect on crops using multivariate analysis tools has not been reported. Objective: This paper assesses the effect of topographic conditions on plants, analyzing the mineral profiles in maize seeds obtained in two land conditions: uplands and lowlands. Materials and Methods: The mineral profile was studied by microwave plasma atomic emission spectrometry. Samples were collected from lowlands and uplands of cultivable lands of the north-east of La Pampa province, Argentina. Results: Differentiation of maize seeds collected from both topographical areas was achieved by principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA). PCA model based on mineral profile allowed to differentiate seeds from upland and lowlands by the influence of Cr and Mg variables. A significant accumulation of Cr and Mg in seeds from lowlands was observed. Cluster analysis confirmed such grouping but also, linear discriminant analysis achieved a correct classification of both the crops, showing the effect of topography on elemental profile. Conclusions: Multi-elemental analysis combined with chemometric tools proved useful to assess the effect of topographic characteristics on crops.


2020 ◽  
Vol 15 ◽  
Author(s):  
Mohanad Mohammed ◽  
Henry Mwambi ◽  
Bernard Omolo

Background: Colorectal cancer (CRC) is the third most common cancer among women and men in the USA, and recent studies have shown an increasing incidence in less developed regions, including Sub-Saharan Africa (SSA). We developed a hybrid (DNA mutation and RNA expression) signature and assessed its predictive properties for the mutation status and survival of CRC patients. Methods: Publicly-available microarray and RNASeq data from 54 matched formalin-fixed paraffin-embedded (FFPE) samples from the Affymetrix GeneChip and RNASeq platforms, were used to obtain differentially expressed genes between mutant and wild-type samples. We applied the support-vector machines, artificial neural networks, random forests, k-nearest neighbor, naïve Bayes, negative binomial linear discriminant analysis, and the Poisson linear discriminant analysis algorithms for classification. Cox proportional hazards model was used for survival analysis. Results: Compared to the genelist from each of the individual platforms, the hybrid genelist had the highest accuracy, sensitivity, specificity, and AUC for mutation status, across all the classifiers and is prognostic for survival in patients with CRC. NBLDA method was the best performer on the RNASeq data while the SVM method was the most suitable classifier for CRC across the two data types. Nine genes were found to be predictive of survival. Conclusion: This signature could be useful in clinical practice, especially for colorectal cancer diagnosis and therapy. Future studies should determine the effectiveness of integration in cancer survival analysis and the application on unbalanced data, where the classes are of different sizes, as well as on data with multiple classes.


Sign in / Sign up

Export Citation Format

Share Document