scholarly journals Analyzing the Cooling Rate and Its Effect on Distribution of Pattern and Size of the Titanium Diboride Particles Formed

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
P. Senthil Kumar ◽  
Pon Selvan Chithirai ◽  
D. Antony Prabu ◽  
G. Surya Prakash ◽  
V. Murali Krishna ◽  
...  

In this work, we synthesize Al/TiB2 metal matrix composites (MMC) based on the effect of cooling rate in the melt while pouring into the permanent mold condition. The objective of this paper is to achieve the desired distribution pattern and increased TiB2 particles’ size in the Al/TiB2 MMC ingot. Two halide salts, viz., potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4), are procured and measured. The two salts were mixed with the aluminium melt in the crucible, and it is stirred manually with help of a graphite rod. Because of the exothermic reaction, the melt reacts very quickly and that is what dropped the salts slowly. The salt particles were synthesized because of the exothermic reaction, and it will allow the particles to grow. The size and distribution of particles differ at different place in the MMC. An FEA tool ProCAST was used to analyze the cooling rate of the melt, and SEM is used to study the microstructure of the ingot at different places. The microstructures helped to identify the size of reinforcement in the MMC. The TiB2 particles are distributed more at this location at 810°C, and the TiB2 particles formed various clusters in this zone as 70%–80%. Also, the tribological characteristics are analyzed with the help of the results.

This paper presents the investigation of moderate properties of solidified Al (LM6)+SiCp metal matrix composite (AMMC). These AMMC is fabricated by considering five different parts of casting and different weight of SiCp for reinforcement. The SiCp wt. % is varied from 5 wt. % to 15 wt. % with a step size 5 %. During casting, temperature is measured using K-thermocouple and temperature vs. solidification curve is traced. These results are compared with the solidification results of Al (LM6) alloy. It is observed that the solidifying duration of AMMC increased as well as decreased liquid temperature by adding SiCp to it. The trend of the curve is also presented that the cooling rate and the duration of solidification are different for different part of casting. Mechanical property of the each five parts of casting is tabulated. It is observed from the properties that the mechanical properties of AMMC increased by increasing the wt. % of the reinforced particles SiCp.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 141 ◽  
Author(s):  
Vladimir Promakhov ◽  
Alexander Zhukov ◽  
Mansur Ziatdinov ◽  
Ilya Zhukov ◽  
Nikita Schulz ◽  
...  

This work presents results in the field of synthesis of new metal matrix composites with matrix NiTi and particles TiB2, and their use as additives to fabricate metal matrix composites based on the Inconel 625 alloy. NiTi-TB2 powders were obtained using self-propagating high-temperature synthesis. Composite NiTi-TiB2 particles were spheroidized on a high-frequency induction plasmatron. Composite NiTi-TB2 particles were mixed with metallic Inconel 625 powder with particle sizes of 50–150 µm. We used direct laser deposition by means of mixture of powders to grow samples with different contents of ceramics in the metal matrix. The process of direct laser deposition during the experiment was investigated. We have determined the peculiarities of the formation of the structure in metal matrix composites with different contents of titanium diboride. We have demonstrated the possibility of using Direct Laser Deposition (DLD) for fabricating items from ceramic metal materials. We have determined promising fields of further research for the purpose of obtaining efficient metal matrix composites using additive manufacturing technologies.


2007 ◽  
Vol 539-543 ◽  
pp. 809-813 ◽  
Author(s):  
Kiyotaka Matsuura ◽  
Yuki Obara

FeAl-TiB2 composites have been combustion synthesized from mixtures of Fe, Al, Ti and B powders. When the powder mixture was heated in vacuum to approximately 900 K, an abrupt increase in temperature was observed, indicating that the combustion synthesis reactions occurred in the powder mixture. X-ray diffraction analyses revealed that the combustion-synthesized sample consisted of only FeAl and TiB2. Metallographic investigations using a scanning electron microscope revealed that fine TiB2 particles were dispersed in FeAl matrix phase. As the volume fraction of the TiB2 particles increased from 0.3 to 0.8 by controlling the powder mixture composition, the average TiB2 particle size increased to 1 to 7 μm and the average Vickers hardness of the composites increased from 800 to 1600. This method has been applied to the fabrication of some other ceramic particle dispersed metal matrix composites such as Fe-TiC and FeAl-TiC systems.


Sign in / Sign up

Export Citation Format

Share Document