scholarly journals Progress on the Experimental Research of Sciatic Nerve Injury with Acupuncture

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hui Wang ◽  
Jingjing Cui ◽  
Shitong Zhao ◽  
Dongsheng Xu ◽  
Shuang Wu ◽  
...  

Objective. To collect and summarize relevant literatures on the experimental researches of sciatic nerve injury (SNI) with acupuncture during the last decade providing a guideline for effectively treating SNI with acupuncture in the future. Methods. The Chinese and English databases including China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform (WanFang Data), VIP Information Chinese Journal Service Platform (VIP Date), and PubMed were searched from 2009 to 2020 with keywords of “acupuncture and moxibustion OR acupuncture OR electroacupuncture OR scalp acupuncture OR wrist-ankle acupuncture OR acupoint injection OR ear acupuncture” AND “sciatic nerve OR sciatic nerve injury OR sciatic injury OR SNI.” The collected data were mainly evaluated in the items of animal model of SNI, type of interventions, selection of acupuncture points (acupoints), course of treatment and its frequency, and approaches of assessment. Results. A total of 89 studies were included in this analysis. Among them, the most commonly used animal models of SNI were produced by the clamp or transverse injury in the rats; the most frequently used intervention was electroacupuncture with dilatational wave of 2/100 Hz; the frequency of acupuncture was mainly performed once per day lasting for more than 2 weeks; the mainly selected acupoints were Huantiao (GB30), Zusanli (ST36), and Yanglingquan (GB34); and the approaches of assessment were contained with behavioral, functional, morphological, histological, cellular, and molecular measurements. Conclusion. The results indicated that the experimental researches of SNI with acupuncture has made marked progress in recent years, which may provide important clues for further investigating the underlying mechanisms of acupuncture for the treatment of SNI in the future.

2020 ◽  
Vol 14 (4) ◽  
pp. 263-269
Author(s):  
A. A. Starinets ◽  
E. L. Egorova ◽  
A. A. Tyrtyshnaia ◽  
I. V. Dyuisen ◽  
A. N. Baryshev ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diego Noé Rodríguez-Sánchez ◽  
Giovana Boff Araujo Pinto ◽  
Luciana Politti Cartarozzi ◽  
Alexandre Leite Rodrigues de Oliveira ◽  
Ana Livia Carvalho Bovolato ◽  
...  

Abstract Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.


2021 ◽  
Vol 145 ◽  
pp. 104984
Author(s):  
Christopher R. Richmond ◽  
Laurel L. Ballantyne ◽  
A. Elizabeth de Guzman ◽  
Brian J. Nieman ◽  
Colin D. Funk ◽  
...  

2014 ◽  
Vol 564 ◽  
pp. 27-31 ◽  
Author(s):  
Masahiro Ohsawa ◽  
Junpei Mutoh ◽  
Shohei Yamamoto ◽  
Hiroaki Hisa

2009 ◽  
Vol 31 (5) ◽  
pp. 441-452 ◽  
Author(s):  
Hung-Chuan Pan ◽  
Fu-Chou Cheng ◽  
Chun-Jung Chen ◽  
Shu-Zhen Lai ◽  
Mu-Jung Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document