scholarly journals Blood Pressure Model Based on Hybrid Feature Convolution Neural Network in Promoting Rehabilitation of Patients with Hypertensive Intracerebral Hemorrhage

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhixia Zheng ◽  
Limei Bai ◽  
Shaoquan Li

Objective. Accurate prediction of the rise of blood pressure is essential for the hypertensive intracerebral hemorrhage. This study uses the hybrid feature convolution neural network to establish the blood pressure model instead of the traditional method of pulse waves. Methods. The pulse waves of 100 patients were collected, and the pulse wave was decomposed into three bell wave compound forms to obtain the accurate pulse wave propagation time. Then, the mixed feature convolution neural network model ABP-net was proposed, which combined the pulse wave propagation time characteristics with the pulse wave waveform characteristics automatically extracted by one-dimensional convolution to predict the arterial blood pressure. Finally, according to the prediction results, 20 patients were treated before the high blood pressure appeared (model group), and another 20 patients with a daily fixed treatment scheme were selected as the control group. Results. In 80 training sets, compared with linear regression and the random forest method, the hybrid feature convolution neural network has higher accuracy in predicting blood pressure. In 20 test sets, the blood pressure error was eliminated within 5 mmHg. The total effective rate in the model group and the control group was 95.0% and 85.0%, respectively ( P = 0.035 ). After treatment, the scores of self-care ability of daily life and limb motor function in the model group were higher than those in the control group ( P < 0.05 ). There were 8 cases (13.6%) in the model group and 17 cases (28.3%) in the control group due to the recurrence of cerebrovascular accident ( P = 0.043 ). Conclusion. Drug treatment guided by a blood pressure model based on a hybrid feature convolution neural network for patients with hypertensive cerebral hemorrhage can significantly and smoothly reduce blood pressure, promote the health recovery, and reduce the occurrence of cerebrovascular accidents.

Sensor Review ◽  
2021 ◽  
Vol 41 (1) ◽  
pp. 74-86
Author(s):  
Jian Tian ◽  
Jiangan Xie ◽  
Zhonghua He ◽  
Qianfeng Ma ◽  
Xiuxin Wang

Purpose Wrist-cuff oscillometric blood pressure monitors are very popular in the portable medical device market. However, its accuracy has always been controversial. In addition to the oscillatory pressure pulse wave, the finger photoplethysmography (PPG) can provide information on blood pressure changes. A blood pressure measurement system integrating the information of pressure pulse wave and the finger PPG may improve measurement accuracy. Additionally, a neural network can synthesize the information of different types of signals and approximate the complex nonlinear relationship between inputs and outputs. The purpose of this study is to verify the hypothesis that a wrist-cuff device using a neural network for blood pressure estimation from both the oscillatory pressure pulse wave and PPG signal may improve the accuracy. Design/methodology/approach A PPG sensor was integrated into a wrist blood pressure monitor, so the finger PPG and the oscillatory pressure wave could be detected at the same time during the measurement. After the peak detection, curves were fitted to the data of pressure pulse amplitude and PPG pulse amplitude versus time. A genetic algorithm-back propagation neural network was constructed. Parameters of the curves were inputted into the neural network, the outputs of which were the measurement values of blood pressure. Blood pressure measurements of 145 subjects were obtained using a mercury sphygmomanometer, the developed device with the neural network algorithm and an Omron HEM-6111 blood pressure monitor for comparison. Findings For the systolic blood pressure (SBP), the difference between the proposed device and the mercury sphygmomanometer is 0.0062 ± 2.55 mmHg (mean ± SD) and the difference between the Omron device and the mercury sphygmomanometer is 1.13 ± 9.48 mmHg. The difference in diastolic blood pressure between the mercury sphygmomanometer and the proposed device was 0.28 ± 2.99 mmHg. The difference in diastolic blood pressure between the mercury sphygmomanometer and Omron HEM-6111 was −3.37 ± 7.53 mmHg. Originality/value Although the difference in the SBP error between the proposed device and Omron HEM-6111 was not remarkable, there was a significant difference between the proposed device and Omron HEM-6111 in the diastolic blood pressure error. The developed device showed an improved performance. This study was an attempt to enhance the accuracy of wrist-cuff oscillometric blood pressure monitors by using the finger PPG and the neural network. The hardware framework constructed in this study can improve the conventional wrist oscillometric sphygmomanometer and may be used for continuous measurement of blood pressure.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
C Chrysohoou ◽  
A Angelis ◽  
G Titsinakis ◽  
D Tsiachris ◽  
P Aggelopoulos ◽  
...  

Abstract Background Cardiac power has been suggested as the most power predictor of mortality in heart failure (HF) patients. In those patients aorta elastic properties and compensation is lost, systolic (and pulse) pressure are therefore reduced and associated with a decrease in ejection duration and pump efficiency. Cardiac rehabilitation programs have showed enhancement in cardiac performance and quality of life in HF patients. Aim Aim of this work was to evaluate the effect of high-intensity interval exercise (i.e., 30 sec at 100% of max workload, followed by 30 sec at rest, on a day-by-day 30 minutes working-out schedule for 12 weeks), on cardiac power, diastolic function indices, right ventricle performance and cardiorespiratory parameters among chronic HF patients. Methods 72 consecutive HF patients (NYHA class II-IV, ejection fraction <50%) who completed the study (exercise training group, n=33, 63±9 years, 88% men, and control group, n=39, 56±11 years, 82% men), underwent cardiopulmonary stress test, non-invasive high-fidelity tonometry of the radial artery, pulse wave velocity measurement using a SphygmoCor device, and echocardiography before and after completion of the training program. Cardiac power output (CPO) (W) was calculated as mean arterial pressure × CO/451, where mean arterial pressure = [(systolic blood pressure − diastolic blood pressure)/3] + diastolic blood pressure. Results Both groups reported similar medical characteristics and physical activity status. General mixed effects models revealed that the intervention group increased 6MWT (by 13%, p<0.05); increased cycle ergometry WRpeak (by 25%, p<0.01), showed higher O2max by 31% (p<0.001) and lower VE/VCO2 (p=0.05), whereas patients in the control group showed nosignificant changes in the aforementioned indices. Also, in the intervention group Emv/Vp was decreased by 14% (p=0.06); E to A ratio by 24% (p=0.004) and E to Emv ratio by 8% (p=0.05); while Stv increased by 25% (p=0.01). Most importantly, the intervention group reduced pulse wave velocity by 9% (p=0.05) and increased augmentation index by 26%; and VTI by 4% (p=0.05); Those parameters were not significantly changed on control group (all p>0.05). Conclusion Hight intensity exercise rehabilitation program revealed beneficial effect on left ventricular diastolic indices and right ventricle performance. As, in those patients compensation of the aorta is also lost and the LV cannot generate the extra force necessary to completely overcome the late systolic augmented pressure, the increase in the augmented pressure (AIa) observed in the intervention group reflects the benefit in aorto-ventricular coupling and cardiac power that boosts systolic pressure and restores a positive influence in pressure, like in early stages of HF. Acknowledgement/Funding None


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Areeg E. Elemam ◽  
Nisreen D. Omer ◽  
Neima M. Ibrahim ◽  
Ahmed B. Ali

Background. The current study investigated the effect of dipping tobacco (DT) use on arterial wall stiffness which is a known marker of increased risk of cardiovascular events. Methods. A case-control study which included 101 adult males was carried out in Al-Shaab Teaching Hospital. Blood pressure and pulse wave analysis parameters were recorded in 51 DT users (study group) before and after 30 minutes of placing tobacco and in 50 nontobacco users (control group). Anthropometric measurements were collected using data collection sheet. Data were entered into a computer and analyzed by using the software Statistical Package for the Social Sciences (SPSS) version 20 (SPSS Inc., Chicago, IL, USA). Results. At baseline measurements, heart rate (HR) was significantly lower in the study group compared to the control group ( 66.15 ± 9.21 vs. 72.87 ± 10.13 beats/min; P value ≤ 0.001). Subendocardial viability ratio (SEVR) was significantly higher in the study group compared to the control group ( 203.44 ± 30.34 vs. 179.11 ± 30.51 % ; P value ≤ 0.001). Acute effects of DT compared to pretobacco dipping showed significant increase in HR ( 72.50 ± 10.89 vs. 66.15 ± 9.21 beats/min; P value ≤ 0.001) and significant decrease in augmentation pressure (AP) (4.30 (2.30-8.00) vs. 3.30 (0.60-6.3) mmHg; P value ≤ 0.001), ejection duration (ED) ( 271.65 ± 19.42 vs. 279.53 ± 20.47   ms ; P value ≤ 0.001), and SEVR ( 187.11 ± 29.81 vs. 203.44 ± 30.34 ; P value ≤ 0.001). Linear regression analysis for AP predictor showed that only HR and AIx@75 affect and predict the values of AP ( Beta ± SE ; − 0.242 ± 0.019 , P value ≤ 0.001; 0.685 ± 0.014 , P value ≤ 0.001). Conclusions. Long-term use of DT was not associated with permanent changes in heart rate and blood pressure. Acute tobacco dipping caused an acute increase in heart rate and oxygen demands of myocardium.


2020 ◽  
Vol 25 (12) ◽  
pp. 4036
Author(s):  
H. Yilmaz Ak ◽  
Y. Ozsahin ◽  
N. Baskurt Aladag ◽  
F. Gencoglu ◽  
B. Sahin Yildiz ◽  
...  

Aim. Patients with chronic inflammatory diseases (CID), such as rheumatoid arthritis (RA) and familial Mediterranean fever (FMF) are more likely to have higher risk of cardiac events. Pulse wave velocity (PWV) can be used to measure the aortic dis-tensibility and it is known as inversely related to the arterial compliance. Increased aortic stiffness which is assessed by PWV, is seem to be associated with arterial blood pressure. In this study, we investigated the arterial compliance by PWV in patients with CID including RA and FMF.Material and methods. We studied 25 patients with RA, 33 patients with FMF and 31 healthy subjects without a history of any cardiovascular risk factors such as hypertension, diabetes mellitus, hyperlipidaemia (89 subjects in total). We measured the arterial compliance by automatic carotid-femoral (aortic) PWV using Complior Colson (France) device. PWV (m/s) = distance (m)/transit time(s).Results. It is seen that, patients with CID have higher carotid-femoral (aortic) PWV (8,76±2,09 vs 8,07±0,94 m/s) compared to control groups (p=0,03). There were significant correlations between PWV and age, body-mass index, systolic blood pressure, diastolic blood pressure and mean blood pressure. (p<0,001, r=0,65; p<0,001, r=0,36; p<0,001, r=0,42; p<0,001, r=0,46; p<0,001, r=0,48, respectively).Conclusion. Arterial compliance, which is assessed by carotid-femoral (aortic) PWV, is decreased in patients with CID such as RA and FMF when it is compared to healthy control group.


2021 ◽  
pp. 1-8
Author(s):  
Cansu Sivrikaya Yildirim ◽  
Pelin Kosger ◽  
Tugcem Akin ◽  
Birsen Ucar

Abstract Children with a family history of hypertension have higher blood pressure and hypertensive pathophysiological changes begin before clinical findings. Here, the presence of arterial stiffness was investigated using central blood pressure measurement and pulse wave analysis in normotensive children with at least one parent with essential hypertension. Twenty-four-hour ambulatory pulse wave analysis monitoring was performed by oscillometric method in a study group of 112 normotensive children of hypertensive parents aged between 7 and 18 comparing with a control group of 101 age- and gender-matched normotensive children of normotensive parents. Pulse wave velocity, central systolic and diastolic blood pressure, systolic, diastolic and mean arterial blood pressure values were higher in the study group than the control group (p < 0.001, p = 0.002, p = 0.008, p = 0.001, p = 0.005, p = 0.001, p = 0.001, respectively). In all age groups (7–10, 11–14, and 15–18 years), pulse wave velocity was higher in the study group than the control group (p < 0.001). Pulse wave velocity was higher in children whose both parents are hypertensive compared to the children whose only mothers are hypertensive (p = 0.011). Pulse wave velocity values were positively correlated with age, weight, height, and body mass index (p < 0.05). Higher pulse wave velocity, central systolic and diastolic blood pressure values detected in the study group can be considered as early signs of hypertensive vascular changes. Pulse wave analysis can be a reliable, non-invasive, and reproducible method that can allow taking necessary precautions regarding lifestyle to prevent disease and target organ damage by detecting early hypertensive changes in genetically risky children.


Sign in / Sign up

Export Citation Format

Share Document