scholarly journals Increased Death of Peripheral Blood Mononuclear Cells after TLR4 Inhibition in Sepsis Is Not via TNF/TNF Receptor-Mediated Apoptotic Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chien-Ming Chu ◽  
Li-Chung Chiu ◽  
Chung-Chieh Yu ◽  
Li-Pang Chuang ◽  
Kuo-Chin Kao ◽  
...  

Background. Apoptosis is one of the causes of immune depression in sepsis. Pyroptosis also occurs in sepsis. The toll-like receptor (TLR) 4 and receptor for advanced glycation end products (RAGE) have been shown to play important roles in apoptosis and pyroptosis. However, it is still unknown whether TLR4 inhibition decreases apoptosis in sepsis. Methods. Stimulated peripheral blood mononuclear cells (PBMCs) with or without lipopolysaccharides (LPS) and high-mobility group box 1 (HMGB1) were cultured with or without TLR4 inhibition using monoclonal antibodies from 20 patients with sepsis. Caspase-3, caspase-8, and caspase-9 activities were measured. The expression of B cell lymphoma 2 (Bcl2) and Bcl2-associated X (Bax) was measured. The cell death of PBMCs was detected using a flow cytofluorimeter. Results. After TLR4 inhibition, Bcl2 to Bax ratio elevated both in LPS and HMGB1-stimulated PBMCs. The activities of caspase-3, caspase-8, and caspase-9 did not change in LPS or HMGB1-stimulated PBMCs. The cell death of LPS and HMGB1-stimulated CD8 lymphocytes and monocytes increased after TLR4 inhibition. The cell death of CD4 lymphocytes was unchanged. Conclusion. The apoptosis did not decrease, while TLR4 was inhibited. After TLR4 inhibition, there was an unknown mechanism to keep cell death in stimulated PBMCs in patients with sepsis.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3412-3412
Author(s):  
Patrick B Walter ◽  
Leah Hohman ◽  
Andrew Rokeby ◽  
Julian Lum ◽  
Robert Hagar ◽  
...  

Abstract Introduction: Sickle cell disease (SCD) is a hemoglobinopathy associated with an increased risk of pulmonary hypertension (PH) due to a number of mechanisms that includes iron overload, hemolysis, erythrocyte-derived arginase (which limits both nitric oxide and arginine bioavailability), functional splenectomy, and a hypercoagulable state among others. Glutathione (GSH, and its oxidized pair glutathione disulfide GSSG) is the principal thiol redox buffer in erythrocytes, which has been linked to hemolysis when depleted. Glutamine is not only a precursor to GSH, but also plays an anti-oxidant role through preservation of the intracellular nicotinamide adenine dinucleotide (NAD) levels, required for reducing GSSG back to GSH, thus decreasing the risk for hemolysis. Low erythrocyte glutamine levels are associated with risk of PH as defined by a tricuspid regurgitant jet velocity of (TRV) ≥2.5 m/s measured by Doppler echocardiography. SCD also exhibits an elevated level of circulating leukocytes, known as leukocytosis, which may contribute to vascular occlusion. The mechanism by which leukocytosis occurs is currently unknown. However, leukocyte cell death can be informative on the regulation of leukocyte cell numbers and measurement of mitochondrial BAX and caspase 9, are classic indicators of an active intrinsic cell death pathway. Autophagy is responsible for the turnover of macromolecules and organelles via the lysosomal degradative pathway. In this pathway, LC3 is important for the maturation and transport of autophagosomes and therefore, a reflection of autophagic activity. Autophagy ensures cell survival under certain conditions of nutrient deprivation or growth factor withdrawal and has also been implicated in innate and adaptive immune responses. In this study, the mitochondrial apoptotic marker BAX and the autophagy marker LC3 were examined in a SCD trial of glutamine therapy in patients at risk for PH. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples taken from SCD (n=13) and control patients (n=7) and BAX and LC3 were measured via western blot analysis. Western blot results were evaluated via densitometry. SCD patients with PH-risk were treated with oral L-glutamine supplementation (10 mg TID) with the objective of estimating the level of cell death and autophagy proteins in circulating PBMCs from SCD patients at baseline and after glutamine supplementation. SCD patients were sampled at baseline (BL),and then at two weeks (W2), four weeks (W4), six weeks (W6), and eight weeks (W8) during the glutamine therapy. Results: Mean age for patients with SCD was 46±14; 39% were male with 54% having Hb-SS, while 46% had Hb-SC. Mean TRV was 3.0±0.6 m/s. The mean age for controls was 32± 12 and 57% were male; all controls were Hb-AA with a mean TRV of 1.8±0.6. At baseline there was no statistical difference in BAX expression between control and SCD patients. In comparison to baseline, however, supplementation with glutamine in SCD patients resulted in significantly increased expression of BAX in PMBCs by 15% over the 8 weeks of therapy; potentially indicating a restorative effect of glutamine on the intrinsic mitochondrial apoptotic pathway, which may ultimately reduce leukocytosis. In contrast, glutamine supplementation over 8 weeks, significantly reduced LC3 expression by 42% in PBMCs, suggesting a decrease in cellular autophagy, thus reducing the ability for PBMCs to remain in circulation. Conclusions: At baseline there was no difference in BAX expression between control and SCD patients, however, after 8 weeks of glutamine supplementation, PBMCs had an increased BAX expression and a decreased LC3 expression. This suggests that PBMCs from glutamine supplemented SCD patients may lose their ability to remain in circulation via apoptosis upregulation and autophagy downregulation Disclosures Walter: Novartis: Research Funding.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Elisabeth Simader ◽  
Lucian Beer ◽  
Maria Laggner ◽  
Vera Vorstandlechner ◽  
Alfred Gugerell ◽  
...  

Abstract Peripheral blood mononuclear cells (PBMCs) have been shown to produce and release a plethora of pro-angiogenetic factors in response to γ-irradiation, partially accounting for their tissue-regenerative capacity. Here, we investigated whether a certain cell subtype of PBMCs is responsible for this effect, and whether the type of cell death affects the pro-angiogenic potential of bioactive molecules released by γ-irradiated PBMCs. PBMCs and PBMC subpopulations, including CD4+ and CD8+ T cells, B cells, monocytes, and natural killer cells, were isolated and subjected to high-dose γ-irradiation. Transcriptome analysis revealed subpopulation-specific responses to γ-irradiation with distinct activation of pro-angiogenic pathways, cytokine production, and death receptor signalling. Analysis of the proteins released showed that interactions of the subsets are important for the generation of a pro-angiogenic secretome. This result was confirmed at the functional level by the finding that the secretome of γ-irradiated PBMCs displayed higher pro-angiogenic activity in an aortic ring assay. Scanning electron microscopy and image stream analysis of γ-irradiated PBMCs revealed distinct morphological changes, indicative for apoptotic and necroptotic cell death. While inhibition of apoptosis had no effect on the pro-angiogenic activity of the secretome, inhibiting necroptosis in stressed PBMCs abolished blood vessel sprouting. Mechanistically, we identified tumor necrosis factor (TNF) receptor superfamily member 1B as the main driver of necroptosis in response to γ-irradiation in PBMCs, which was most likely mediated via membrane-bound TNF-α. In conclusion, our study demonstrates that the pro-angiogenic activity of the secretome of γ-irradiated PBMCs requires interplay of different PBMC subpopulations. Furthermore, we show that TNF-dependent necroptosis is an indispensable molecular process for conferring tissue-regenerative activity and for the pro-angiogenic potential of the PBMC secretome. These findings contribute to a better understanding of secretome-based therapies in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document