scholarly journals Fault Diagnosis of Rolling Bearing Based on Improved VMD and KNN

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Quanbo Lu ◽  
Xinqi Shen ◽  
Xiujun Wang ◽  
Mei Li ◽  
Jia Li ◽  
...  

Variational modal decomposition (VMD) has the end effect, which makes it difficult to efficiently obtain fault eigenvalues from rolling bearing fault signals. Inspired by the mirror extension, an improved VMD is proposed. This method combines VMD and mirror extension. The mirror extension is a basic algorithm to inhibit the end effect. A comparison is made with empirical mode decomposition (EMD) for fault diagnosis. Experiments show that the improved VMD outperforms EMD in extracting the fault eigenvalues. The performance of the new algorithm is proven to be effective in real-life mechanical fault diagnosis. Furthermore, in this article, combining with singular value decomposition (SVD), fault eigenvalues are extracted. In this way, fault classification is realized by K-nearest neighbor (KNN). Compared with EMD, the proposed approach has advantages in the recognition rate, which can accurately identify fault types.

2010 ◽  
Vol 29-32 ◽  
pp. 1602-1607 ◽  
Author(s):  
Xiang Shun Chen ◽  
Hu Biao Zeng ◽  
Zhi Xiong Li

Rolling bearings are widely used in various areas including aircraft, mining, manufacturing, and agriculture, etc. The breakdowns of the rotational machinery resulted from the rolling bearing failures account for 30%. It is therefore imperative to monitor the rolling bearing conditions in time in order to prevent the malfunctions of the plants. In the present paper is described a fault detection and diagnosis technique for rolling bearing multi-faults based on wavelet-principle component analysis (PCA) and fuzzy k-nearest neighbor (FKNN). In the diagnosis process, the wavelet analysis was firstly employed to decompose the vibration data of the rolling bearings under eight different operating conditions, and for each sample its energy of each sub-band was calculated to obtain the original feature space. Then, the PCA was used to reduce the dimensionality of the original feature vector and hence the most important features could be gotten. Lastly, the FKNN algorithm was employed in the pattern recognition to identify the conditions of the bearings of interest. The experimental results suggest that the sensitive fault features can be extracted efficiently after the wavelet-PCA processing, and the proposed diagnostic system is effective for the rolling bearing multi-fault diagnosis. In addition, the proposed method can achieve higher performance than that without PCA with respect to the classification rate.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 621 ◽  
Author(s):  
Zhilin Dong ◽  
Jinde Zheng ◽  
Siqi Huang ◽  
Haiyang Pan ◽  
Qingyun Liu

Multi-scale permutation entropy (MPE) is an effective nonlinear dynamic approach for complexity measurement of time series and it has been widely applied to fault feature representation of rolling bearing. However, the coarse-grained time series in MPE becomes shorter and shorter with the increase of the scale factor, which causes an imprecise estimation of permutation entropy. In addition, the different amplitudes of the same patterns are not considered by the permutation entropy used in MPE. To solve these issues, the time-shift multi-scale weighted permutation entropy (TSMWPE) approach is proposed in this paper. The inadequate process of coarse-grained time series in MPE was optimized by using a time shift time series and the process of probability calculation that cannot fully consider the symbol mode is solved by introducing a weighting operation. The parameter selections of TSMWPE were studied by analyzing two different noise signals. The stability and robustness were also studied by comparing TSMWPE with TSMPE and MPE. Based on the advantages of TSMWPE, an intelligent fault diagnosis method for rolling bearing is proposed by combining it with gray wolf optimized support vector machine for fault classification. The proposed fault diagnostic method was applied to two cases of experimental data analysis of rolling bearing and the results show that it can diagnose the fault category and severity of rolling bearing accurately and the corresponding recognition rate is higher than the rate provided by the existing comparison methods.


Author(s):  
Jianqun Zhang ◽  
Qing Zhang ◽  
Xianrong Qin ◽  
Yuantao Sun

To identify rolling bearing faults under variable load conditions, a method named DISA-KNN is proposed in this paper, which is based on the strategy of feature extraction-domain adaptation-classification. To be specific, the time-domain and frequency-domain indicators are used for feature extraction. Discriminative and domain invariant subspace alignment (DISA) is used to minimize the data distributions’ discrepancies between the training data (source domain) and testing data (target domain). K-nearest neighbor (KNN) is applied to identify rolling bearing faults. DISA-KNN’s validation is proved by the experimental signal collected under different load conditions. The identification accuracies obtained by the DISA-KNN method are more than 90% on four datasets, including one dataset with 99.5% accuracy. The strength of the proposed method is further highlighted by comparisons with the other 8 methods. These results reveal that the proposed method is promising for the rolling bearing fault diagnosis in real rotating machinery.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


Author(s):  
Amal A. Moustafa ◽  
Ahmed Elnakib ◽  
Nihal F. F. Areed

This paper presents a methodology for Age-Invariant Face Recognition (AIFR), based on the optimization of deep learning features. The proposed method extracts deep learning features using transfer deep learning, extracted from the unprocessed face images. To optimize the extracted features, a Genetic Algorithm (GA) procedure is designed in order to select the most relevant features to the problem of identifying a person based on his/her facial images over different ages. For classification, K-Nearest Neighbor (KNN) classifiers with different distance metrics are investigated, i.e., Correlation, Euclidian, Cosine, and Manhattan distance metrics. Experimental results using a Manhattan distance KNN classifier achieves the best Rank-1 recognition rate of 86.2% and 96% on the standard FGNET and MORPH datasets, respectively. Compared to the state-of-the-art methods, our proposed method needs no preprocessing stages. In addition, the experiments show its privilege over other related methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Hyung-Ju Cho

We investigate the k-nearest neighbor (kNN) join in road networks to determine the k-nearest neighbors (NNs) from a dataset S to every object in another dataset R. The kNN join is a primitive operation and is widely used in many data mining applications. However, it is an expensive operation because it combines the kNN query and the join operation, whereas most existing methods assume the use of the Euclidean distance metric. We alternatively consider the problem of processing kNN joins in road networks where the distance between two points is the length of the shortest path connecting them. We propose a shared execution-based approach called the group-nested loop (GNL) method that can efficiently evaluate kNN joins in road networks by exploiting grouping and shared execution. The GNL method can be easily implemented using existing kNN query algorithms. Extensive experiments using several real-life roadmaps confirm the superior performance and effectiveness of the proposed method in a wide range of problem settings.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 290 ◽  
Author(s):  
Xiong Gan ◽  
Hong Lu ◽  
Guangyou Yang

This paper proposes a new method named composite multiscale fluctuation dispersion entropy (CMFDE), which measures the complexity of time series under different scale factors and synthesizes the information of multiple coarse-grained sequences. A simulation validates that CMFDE could improve the stability of entropy estimation. Meanwhile, a fault recognition method for rolling bearings based on CMFDE, the minimum redundancy maximum relevancy (mRMR) method, and the k nearest neighbor (kNN) classifier (CMFDE-mRMR-kNN) is developed. For the CMFDE-mRMR-kNN method, the CMFDE method is introduced to extract the fault characteristics of the rolling bearings. Then, the sensitive features are obtained by utilizing the mRMR method. Finally, the kNN classifier is used to recognize the different conditions of the rolling bearings. The effectiveness of the proposed CMFDE-mRMR-kNN method is verified by analyzing the standard experimental dataset. The experimental results show that the proposed fault diagnosis method can effectively classify the conditions of rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document