Recognition of 3D Objects from 2D Views Features

2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


Teknika ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 96-103
Author(s):  
Mohammad Farid Naufal ◽  
Selvia Ferdiana Kusuma ◽  
Kevin Christian Tanus ◽  
Raynaldy Valentino Sukiwun ◽  
Joseph Kristiano ◽  
...  

Kondisi pandemi global Covid-19 yang muncul diakhir tahun 2019 telah menjadi permasalahan utama seluruh negara di dunia. Covid-19 merupakan virus yang menyerang organ paru-paru dan dapat mengakibatkan kematian. Pasien Covid-19 banyak yang telah dirawat di rumah sakit sehingga terdapat data citra chest X-ray paru-paru pasien yang terjangkit Covid-19. Saat ini sudah banyak peneltian yang melakukan klasifikasi citra chest X-ray menggunakan Convolutional Neural Network (CNN) untuk membedakan paru-paru sehat, terinfeksi covid-19, dan penyakit paru-paru lainnya, namun belum ada penelitian yang mencoba membandingkan performa algoritma CNN dan machine learning klasik seperti Support Vector Machine (SVM), dan K-Nearest Neighbor (KNN) untuk mengetahui gap performa dan waktu eksekusi yang dibutuhkan. Penelitian ini bertujuan untuk membandingkan performa dan waktu eksekusi algoritma klasifikasi K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan CNN  untuk mendeteksi Covid-19 berdasarkan citra chest X-Ray. Berdasarkan hasil pengujian menggunakan 5 Cross Validation, CNN merupakan algoritma yang memiliki rata-rata performa terbaik yaitu akurasi 0,9591, precision 0,9592, recall 0,9591, dan F1 Score 0,959 dengan waktu eksekusi rata-rata sebesar 3102,562 detik.



2019 ◽  
Vol 11 (1) ◽  
pp. 11-16
Author(s):  
Mohamad Efendi Lasulika

One obstacle of the default payment is the lack of analysis in the new customer acceptance process which is only reviewed from the form provided at registration, as for the purpose of this study to find out the highest accuracy results from the comparison of Naïve Bayes, SVM and K-NN Algorithms. It can be seen that the Naïve Bayes algorithm which has the highest accuracy value is 96%, while the K-Neural Network algorithm has the highest accuracy at K = 3 which is 92%, while Support Vector Machine only gets accuracy of 66%. The ROC Curve results show that Naïve Bayes achieved the best AUC value of 0.99. Comparison between data mining classification algorithms namely Naïve Bayes, K-Neural Network and Support Vector Machine for predicting smooth payment using multivariate data types, Naïve Bayes method is an accurate algorithm and this method is also very dominant towards other methods. Based on Accuracy, AUC and T-tests this method falls into the best classification category.



2019 ◽  
Vol 15 (2) ◽  
pp. 267-274
Author(s):  
Tati Mardiana ◽  
Hafiz Syahreva ◽  
Tuslaela Tuslaela

Saat ini usaha waralaba di Indonesia memiliki daya tarik yang relatif tinggi. Namun, para pelaku usaha banyak juga yang mengalami kegagalan. Bagi seseorang yang ingin memulai usaha perlu mempertimbangkan sentimen masyarakat terhadap usaha waralaba. Meskipun demikian, tidak mudah untuk melakukan analisis sentimen karena banyaknya jumlah percakapan di Twitter terkait usaha waralaba dan tidak terstruktur. Tujuan penelitian ini adalah melakukan komparasi akurasi metode Neural Network, K-Nearest Neighbor, Naïve Bayes, Support Vector Machine, dan Decision Tree dalam mengekstraksi atribut pada dokumen atau teks yang berisi komentar untuk mengetahui ekspresi didalamnya dan mengklasifikasikan menjadi komentar positif dan negatif.  Penelitian ini menggunakan data realtime dari  tweets pada Twitter. Selanjutnya mengolah data tersebut dengan terlebih dulu membersihkannya dari noise dengan menggunakan Phyton. Hasil  pengujian  dengan  confusion  matrix  diperoleh  nilai akurasi Neural Network sebesar 83%, K-Nearest Neighbor sebesar 52%, Support Vector Machine  sebesar 83%, dan Decision Tree sebesar 81%. Penelitian ini menunjukkan metode Support Vector Machine  dan Neural Network paling baik untuk mengklasifikasikan komentar positif dan negatif terkait usaha waralaba.  



2016 ◽  
Vol 24 (2) ◽  
pp. 361-370 ◽  
Author(s):  
Edward Choi ◽  
Andy Schuetz ◽  
Walter F Stewart ◽  
Jimeng Sun

Objective: We explored whether use of deep learning to model temporal relations among events in electronic health records (EHRs) would improve model performance in predicting initial diagnosis of heart failure (HF) compared to conventional methods that ignore temporality. Materials and Methods: Data were from a health system’s EHR on 3884 incident HF cases and 28 903 controls, identified as primary care patients, between May 16, 2000, and May 23, 2013. Recurrent neural network (RNN) models using gated recurrent units (GRUs) were adapted to detect relations among time-stamped events (eg, disease diagnosis, medication orders, procedure orders, etc.) with a 12- to 18-month observation window of cases and controls. Model performance metrics were compared to regularized logistic regression, neural network, support vector machine, and K-nearest neighbor classifier approaches. Results: Using a 12-month observation window, the area under the curve (AUC) for the RNN model was 0.777, compared to AUCs for logistic regression (0.747), multilayer perceptron (MLP) with 1 hidden layer (0.765), support vector machine (SVM) (0.743), and K-nearest neighbor (KNN) (0.730). When using an 18-month observation window, the AUC for the RNN model increased to 0.883 and was significantly higher than the 0.834 AUC for the best of the baseline methods (MLP). Conclusion: Deep learning models adapted to leverage temporal relations appear to improve performance of models for detection of incident heart failure with a short observation window of 12–18 months.



2013 ◽  
Vol 22 (02) ◽  
pp. 1250083
Author(s):  
PEJMAN MOWLAEE ◽  
ABOLGHASEM SAYADIYAN

A preprocessing stage in every speech/music applications including audio/speech separation, speech/speaker recognition and audio/genre transcription task is inevitable. The importance of such pre-processing stage is originated from the requisite of determining each frame of the given signal is belonged to which classes, namely: speech only, music only or speech/music mixture. Such classification can significantly decrease the computational burden due to exhaustive search commonly introduced as a problem in model-based speech recognition or separation as well as music transcription scenarios. In this paper, we present a new method to separate mixed type audio frames based on support vector machine (SVM) and neural network. We present a feature type selection algorithm which seeks for the most appropriate features to discriminate possible classes (hypotheses) on the mixed signal. We also propose features based on eigen-decomposition on the mixed frame. Experimental results demonstrate that the proposed features together with the selected audio classifiers achieve acceptable classification results. From the experimental results, it is observed that the proposed system outperforms other classification systems including k-nearest neighbor (k-NN) and multi-layer perceptron (MLP).



Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.



2021 ◽  
Vol 13 (6) ◽  
pp. 3497
Author(s):  
Hassan Adamu ◽  
Syaheerah Lebai Lutfi ◽  
Nurul Hashimah Ahamed Hassain Malim ◽  
Rohail Hassan ◽  
Assunta Di Vaio ◽  
...  

Sustainable development plays a vital role in information and communication technology. In times of pandemics such as COVID-19, vulnerable people need help to survive. This help includes the distribution of relief packages and materials by the government with the primary objective of lessening the economic and psychological effects on the citizens affected by disasters such as the COVID-19 pandemic. However, there has not been an efficient way to monitor public funds’ accountability and transparency, especially in developing countries such as Nigeria. The understanding of public emotions by the government on distributed palliatives is important as it would indicate the reach and impact of the distribution exercise. Although several studies on English emotion classification have been conducted, these studies are not portable to a wider inclusive Nigerian case. This is because Informal Nigerian English (Pidgin), which Nigerians widely speak, has quite a different vocabulary from Standard English, thus limiting the applicability of the emotion classification of Standard English machine learning models. An Informal Nigerian English (Pidgin English) emotions dataset is constructed, pre-processed, and annotated. The dataset is then used to classify five emotion classes (anger, sadness, joy, fear, and disgust) on the COVID-19 palliatives and relief aid distribution in Nigeria using standard machine learning (ML) algorithms. Six ML algorithms are used in this study, and a comparative analysis of their performance is conducted. The algorithms are Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Random Forest (RF), Logistics Regression (LR), K-Nearest Neighbor (KNN), and Decision Tree (DT). The conducted experiments reveal that Support Vector Machine outperforms the remaining classifiers with the highest accuracy of 88%. The “disgust” emotion class surpassed other emotion classes, i.e., sadness, joy, fear, and anger, with the highest number of counts from the classification conducted on the constructed dataset. Additionally, the conducted correlation analysis shows a significant relationship between the emotion classes of “Joy” and “Fear”, which implies that the public is excited about the palliatives’ distribution but afraid of inequality and transparency in the distribution process due to reasons such as corruption. Conclusively, the results from this experiment clearly show that the public emotions on COVID-19 support and relief aid packages’ distribution in Nigeria were not satisfactory, considering that the negative emotions from the public outnumbered the public happiness.



Sign in / Sign up

Export Citation Format

Share Document