scholarly journals An Improved Asymptotic on the Representations of Integers as Sums of Products

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenjia Zhao

In this paper, we improve the error terms of Chace’s results in the study by Chace (1994) on the number of ways of writing an integer N as a sum of k products of l factors, valid for k ≥ 3 and l = 2 , 3. More precisely, for l = 2 , 3, we improve the upper bound N k − 1 − 2 k − 2 / k − 1 l + 1 + ε , k ≥ 3 for the error term, to N 2 − 2 / 2 l + 1 + ε when k = 3 and N k − 1 − 4 k − 2 / l + 1 k + l − 2 + ε when k ≥ 4 .

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


Author(s):  
OLGA BALKANOVA ◽  
DMITRY FROLENKOV ◽  
MORTEN S. RISAGER

Abstract The Zagier L-series encode data of real quadratic fields. We study the average size of these L-series, and prove asymptotic expansions and omega results for the expansion. We then show how the error term in the asymptotic expansion can be used to obtain error terms in the prime geodesic theorem.


2020 ◽  
pp. 1-34
Author(s):  
Jiawei Lin ◽  
Greg Martin

Abstract Let $a_1$ , $a_2$ , and $a_3$ be distinct reduced residues modulo q satisfying the congruences $a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$ . We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which $\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$ . The relationship among the $a_i$ allows us to normalize the error terms for the $\pi (x;q,a_i)$ in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.


2004 ◽  
Vol 2004 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Aleksandar Ivic

Several estimates for the convolution functionC [f(x)]:=∫1xf(y) f(x/y)(dy/y)and its iterates are obtained whenf(x)is a suitable number-theoretic error term. We deal with the case of the asymptotic formula for∫0T|ζ(1/2+it)|2kdt(k=1,2), the general Dirichlet divisor problem, the problem of nonisomorphic Abelian groups of given order, and the Rankin-Selberg convolution.


1989 ◽  
Vol Volume 12 ◽  
Author(s):  
Sukumar Das Adhikari ◽  
R Balasubramanian ◽  
A Sankaranarayanan

International audience Let $r_4(n)$ be the number of ways of writing $n$ as the sum of four squares. Set $P_4(x)= \sum \limits_{n\le x} r_4(n)-\frac {1}{2}\pi^2 x^2$, the error term for the average order of this arithmetical function. In this paper, following the ideas of Erd\"os and Shapiro, a new elementary method is developed which yields the slightly stronger result $P_4(x)= \Omega_{+}(x \log \log x)$. We also apply our method to give an upper bound for a quantity involving the Euler $\varphi$-function. This second result gives an elementary proof of a theorem of H. L. Montgomery


2011 ◽  
Vol 7 (2) ◽  
pp. 51
Author(s):  
Arlette C. Wilson

Regression analysis has been shown through research to be a useful audit tool. One underlying assumption of regression theory is error-term normality. Decision rules were applied to models developed using simulated data with normal and nonnormal error terms. Material errors were seeded into the audit period data, and incorrect rejections and acceptances were tabulated for both types of models. The results of this study suggest that nonnormality of error terms may not significantly affect auditor decisions.


2018 ◽  
Vol 6 ◽  
Author(s):  
THOMAS A. HULSE ◽  
CHAN IEONG KUAN ◽  
DAVID LOWRY-DUDA ◽  
ALEXANDER WALKER

The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to$P_{k}(n)^{2}$, where$P_{k}(n)$is the discrepancy between the volume of the$k$-dimensional sphere of radius$\sqrt{n}$and the number of integer lattice points contained in that sphere. We prove asymptotics with improved power-saving error terms for smoothed sums, including$\sum P_{k}(n)^{2}e^{-n/X}$and the Laplace transform$\int _{0}^{\infty }P_{k}(t)^{2}e^{-t/X}\,dt$, in dimensions$k\geqslant 3$. We also obtain main terms and power-saving error terms for the sharp sums$\sum _{n\leqslant X}P_{k}(n)^{2}$, along with similar results for the sharp integral$\int _{0}^{X}P_{3}(t)^{2}\,dt$. This includes producing the first power-saving error term in mean square for the dimension-3 Gauss circle problem.


2008 ◽  
Vol 04 (05) ◽  
pp. 747-756 ◽  
Author(s):  
ANNE-MARIA ERNVALL-HYTÖNEN

We give a proof for the approximate functional equation for exponential sums related to holomorphic cusp forms and derive an upper bound for the error term.


1999 ◽  
Vol 127 (1) ◽  
pp. 117-131 ◽  
Author(s):  
ALEKSANDAR IVIĆ ◽  
KOHJI MATSUMOTO ◽  
YOSHIO TANIGAWA

We study Δ(x; ϕ), the error term in the asymptotic formula for [sum ]n[les ]xcn, where the cns are generated by the Rankin–Selberg series. Our main tools are Voronoï-type formulae. First we reduce the evaluation of Δ(x; ϕ) to that of Δ1(x; ϕ), the error term of the weighted sum [sum ]n[les ]x(x−n)cn. Then we prove an upper bound and a sharp mean square formula for Δ1(x; ϕ), by applying the Voronoï formula of Meurman's type. We also prove that an improvement of the error term in the mean square formula would imply an improvement of the upper bound of Δ(x; ϕ). Some other related topics are also discussed.


2006 ◽  
Vol 80 (94) ◽  
pp. 141-156 ◽  
Author(s):  
Aleksandar Ivic

We study the convolution function C[f(x)]:=\int_1^x f(y)f\Bigl(\frac xy\Bigr)\frac{dy}y When f(x) is a suitable number-theoretic error term. Asymptotics and upper bounds for C[f(x)] are derived from mean square bounds for f(x). Some applications are given, in particular to |\zeta(\tfrac12+ix)|^{2k} and the classical Rankin--Selberg problem from analytic number theory.


Sign in / Sign up

Export Citation Format

Share Document