scholarly journals Fuzzy Plastic Constitutive Model and Its Application to Subgrade

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xigang Wang ◽  
Liling Jin ◽  
Yang Xing ◽  
Mingfu Fu

The subgrade of a road is subjected to cyclic loading and unloading under the action of traffic loads. To study this mechanical response, the plastic membership function was introduced into the modified Cambridge model, and thus, the fuzzy plastic Cambridge constitutive model was obtained. With the continuous evolution of the plastic membership function from 0 to 1, the fuzzy plastic Cambridge constitutive model continuously transitions the plastic properties inside and outside the initial yield surface. The evolution of the plastic membership function can replace the complex hardening law. The reliability of the model was verified using triaxial tests and simple cyclic loading and unloading tests. Using the finite element method, the mechanical response of the subgrade under cyclic loading was calculated. The fuzzy plastic Cambridge model can explain the insignificant yield characteristics of geotechnical media. In the fuzzy plasticity theory, the stress inside and outside the initial yield surface can produce plasticity. Absolute plasticity was not observed; only different degrees of plasticity existed.

2018 ◽  
Vol 27 (8) ◽  
pp. 2530-2536 ◽  
Author(s):  
J. Glasbrenner ◽  
C. Domnick ◽  
M. J. Raschke ◽  
T. Willinghöfer ◽  
C. Kittl ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xi Chen ◽  
Wei Wang ◽  
Yajun Cao ◽  
Qizhi Zhu ◽  
Weiya Xu ◽  
...  

The study on hydromechanical coupling properties of rocks is of great importance for rock engineering. It is closely related to the stability analysis of structures in rocks under seepage condition. In this study, a series of conventional triaxial tests under drained condition and hydrostatic compression tests under drained or undrained condition on sandstones were conducted. Moreover, complex cyclic loading and unloading tests were also carried out. Based on the experimental results, the following conclusions were obtained. For conventional triaxial tests, the elastic modulus, peak strength, crack initiation stress, and expansion stress increase with increased confining pressure. Pore pressure weakened the effect of the confining pressure under drained condition, which led to a decline in rock mechanical properties. It appeared that cohesion was more sensitive to pore pressure than to the internal friction angle. For complex loading and unloading cyclic tests, in deviatoric stress loading and unloading cycles, elastic modulus increased obviously in first loading stage and increased slowly in next stages. In confining pressure loading and unloading cycles, the Biot coefficient decreased first and then increased, which indicates that damage has a great impact on the Biot coefficient.


2018 ◽  
Vol 10 (09) ◽  
pp. 1850095 ◽  
Author(s):  
H. Wang ◽  
D. Tang ◽  
D. Y. Li ◽  
Y. H. Peng ◽  
P. D. Wu

Magnesium alloys exhibit significant inelastic behavior during unloading, especially when twinning and detwinning are involved. It is commonly accepted that noteworthy inelastic behavior will be observed during unloading if twinning occurs during previous loading. However, this phenomenon is not always observed for Mg sheets with strong rolled texture. Therefore, the inelasticity of AZ31B rolled sheets with different rolled textures during cyclic loading-unloading are investigated by elastic viscoplastic self-consistent polycrystal plasticity model. The incorporation of the twinning and detwinning model enables the treatment of detwinning, which plays an important role for inelastic behavior during unloading. The effects of texture, deformation history, and especially twinning and detwinning on the inelastic behaviors are carefully investigated and found to be remarkable. The simulated results are in agreement with the available experimental observations, which reveals that the inelastic behavior for strongly rolled sheets is very different than the extruded bars.


2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986102
Author(s):  
Dongxu Liang ◽  
Nong Zhang ◽  
Lixiang Xie ◽  
Guangming Zhao ◽  
Deyu Qian

It is of significance to study the damage and destruction of rock under cyclic loading in geotechnical engineering. We determined the trends in damage evolution of sandstone under constant-amplitude and tiered cyclic loading and unloading under uniaxial compression. The results of the study show that (1) the variation of acoustic-emission events was consistent with the stress curves and 89% of all acoustic-emission events occurred during the cycling stages. The observed Kaiser effect was more notable in tiered cycling. (2) The damage variable increased sharply in the cycling stages and its increment was 0.07 higher for tiered cycling than constant-amplitude cycling. Sandstone exhibited greater damage under tiered cyclic loading and unloading. (3) Equations for the evolution of the damage variable under the two cycle modes were obtained by fitting of experimental data. (4) The fractal dimensions of the constant-amplitude cycle were larger than those of the tiered cycle. The process of damage and destruction presents a trend of reducing fractal dimension. The damage accumulation of sandstone under tiered cycling was faster than under constant-amplitude cycling. These results provide references for damage and early warning of rock under both constant-amplitude and tiered cyclic loading and unloading.


1979 ◽  
Vol 101 (1) ◽  
pp. 59-63 ◽  
Author(s):  
F. Ellyin ◽  
K. W. Neale

The effect of repeated loading on the yield surface is investigated experimentally for an aluminum alloy. Initial yield surfaces under combined axial stress and torsion are first obtained, and yield surfaces subsequent to steady-state plastic response are then determined for various cyclic loading programs. The results suggest that the initial yield surface expands and translates under cyclic loading and that the form of the steady-state yield surface is independent of the stress ratio.


Sign in / Sign up

Export Citation Format

Share Document