scholarly journals Experimental Study of Stress-Seepage Coupling Properties of Sandstone under Different Loading Paths

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xi Chen ◽  
Wei Wang ◽  
Yajun Cao ◽  
Qizhi Zhu ◽  
Weiya Xu ◽  
...  

The study on hydromechanical coupling properties of rocks is of great importance for rock engineering. It is closely related to the stability analysis of structures in rocks under seepage condition. In this study, a series of conventional triaxial tests under drained condition and hydrostatic compression tests under drained or undrained condition on sandstones were conducted. Moreover, complex cyclic loading and unloading tests were also carried out. Based on the experimental results, the following conclusions were obtained. For conventional triaxial tests, the elastic modulus, peak strength, crack initiation stress, and expansion stress increase with increased confining pressure. Pore pressure weakened the effect of the confining pressure under drained condition, which led to a decline in rock mechanical properties. It appeared that cohesion was more sensitive to pore pressure than to the internal friction angle. For complex loading and unloading cyclic tests, in deviatoric stress loading and unloading cycles, elastic modulus increased obviously in first loading stage and increased slowly in next stages. In confining pressure loading and unloading cycles, the Biot coefficient decreased first and then increased, which indicates that damage has a great impact on the Biot coefficient.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Jixi Shao ◽  
Yaoqing Hu ◽  
Tao Meng ◽  
Su Song ◽  
Peihua Jin ◽  
...  

Underground in situ pyrolysis and gasification is an important method to enable clean utilization of lignite in China. In this study, using the high-temperature triaxial permeability test equipment for different ranges of temperature and pore pressure, the permeability and mechanical characteristics of lignite from the Pingzhuang Mine Area in Chifeng have been examined. The results show that, at constant confining pressure, the elastic modulus of lignite decreases with increasing temperature. For temperature up to approximately 75°C, the elastic modulus is close to the modulus under the uniaxial state. As the temperature increases, the stress-strain curves during loading and unloading are different. The differences between the curves during loading and unloading are greater at higher temperature due to the greater residual deformation. In addition, in different temperature ranges (i.e., 150–650°C), the triaxial creep curves of lignite are different. In particular, at 300–450°C, the triaxial creep curve of lignite alternates between the accelerated creep and the steady creep. Moreover, the permeability change rule in the lignite is complex, and it is governed by the temperature and pore pressure. Hence, for different temperature range and pore pressure, the variations in the permeability are different. In fact, as the temperature increases, the permeability of lignite fluctuates.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yang Zhang ◽  
Yongjie Yang ◽  
Depeng Ma

In order to understand the influence of unloading path on the mechanical properties of coal, triaxial unloading confining pressure tests with different initial confining pressure and different unloading rate were carried out. The test results show that the triaxial unloading strength of coal samples under different test conditions is lower than conventional triaxial tests, but the brittleness characteristics are more obvious. This result indicates that the coal samples are easily damaged under unloading conditions. In the axial loading stage of the confinement unloading tests, the axial strain plays a leading role. However, during the confining pressure unloading stage, the circumferential deformation is large, which is the main deformation in this stage. Higher unloading rates of confining pressure are associated with shorter times between the peak stress position and sample complete failure. This shows that samples are more easily destroyed under higher unloading rates and the samples are more difficultly destroyed under lower unloading rates. In addition, with increasing unloading rate, the peak principal stress difference and confining pressure at failure decrease gradually, whereas the confining pressure difference at failure increases gradually. Compared with conventional triaxial compression tests, the cohesion of coal is reduced and the internal friction angle is increased under the condition of triaxial unloading test.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Fu Yi ◽  
Changbo Du

To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.


2006 ◽  
Vol 326-328 ◽  
pp. 1797-1800 ◽  
Author(s):  
Qing Chun Zhou ◽  
Hai Bo Li ◽  
Chun He Yang ◽  
Chao Wen Luo

The mechanical properties of rock under high temperature, high geostress and high pore pressure are the basic and important information to assess the safety of underground engineering in west China. Based on the environmental conditions of the west route of south-to-north water transfer project in west China, a series of triaxial tests at confining pressures (0 to 60MPa) and temperatures (25°C to 70°C) as well as pore pressure (0 to 10MPa) have been conducted for a sandstone. It is reported that under the temperatures varying from 25°C to 70°C, the strength of the rock increases with the increment of confining pressure, while the deformation modulus of the rock doesn’t change distinctly with the increment of confining pressures. It is also indicated under the temperatures condition in the experiments, when the confining pressure is lower than 40MPa, the strength of the rock increases with the increment of temperature, whereas when the confining pressure is higher than 40MPa, the strength of rock tend to decrease with increment of temperature. It is further shown that the strength decreases with increasing pore pressure, and the decreasing rates tend to decrease with the increment of confining pressures.


2012 ◽  
Vol 256-259 ◽  
pp. 354-357
Author(s):  
Zi Wei Ding ◽  
Amirhossein Bagherieh ◽  
Rui Min Feng ◽  
Xing Xing Wen

Because of unique properties of locked sand (very high friction angle and very low cohesion), a new pillar design method based on present basic pillar design theories must be developed. Wilson theory puts its focus on confining pressure, which is related to friction angle and cohesion. Triaxial tests results show that locked sand at Pattison mine has an average friction angle of 57°, which means the strength of the material increases rapidly with the confining pressure, and average cohesion of 2.6 MPa. Results show that choosing Wilson theory as basic pillar design theory not only considers the high friction angle of locked sand, but also minimizes the effects of Wilson’s hypothesis of neglecting the unconfined strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Shuren Wang ◽  
Paul Hagan ◽  
Yanhai Zhao ◽  
Xu Chang ◽  
Ki-Il Song ◽  
...  

To investigate the mechanical properties and energy evolution characteristics of sandstone depending on the water contents and confining pressure, the uniaxial and triaxial tests were conducted. The test results show that the strain energy was stored in the sandstone samples at the prepeak stage, and that is suddenly released when the failure occurred, and energy dissipation is sharply increased at the postpeak stage. The damage and energy dissipation characteristics of the samples are observed clearly under the stepwise loading and unloading process. The critical strain energy and energy dissipation show a clear exponential relationship. The critical elastic energy decreases linearly as the water content increases. As the confining pressure increases, the critical elastic energy of the samples transforms from linear to exponential. The concept of energy enhancement factor is proposed to characterize the strengthening effect induced by the confining pressure on the energy storage capacity of the rock samples. The energy evolution of the sandstone samples is more sensitive to the confining pressure than that of the water content.


1992 ◽  
Vol 38 (128) ◽  
pp. 65-76 ◽  
Author(s):  
P. Kalifa ◽  
G. Ouillon ◽  
P. Duval

AbstractTriaxial and uniaxial compression tests have been carried out at –10°C on granular ice in order to study the role of microcracking on failure in the ductile-brittle transition zone. In the triaxial tests, the effect of confining pressure and strain rate on the crack population, as well as on strength and strain at the peak stress, was investigated. In the uniaxial tests, we measured the evolution of elastic and non-elastic components of deformation with the stress-strain history. The concept of effective stress, with a single scalar damage variable, was used to calculate the effect of microcracking on the strain components.


2020 ◽  
pp. 317-317
Author(s):  
Feng Xu ◽  
Bowen Qian ◽  
Ling Tan ◽  
Jianqiang Xu ◽  
Shengchuan Tang ◽  
...  

Aiming at the problem of cement ring sealing failure during deep high-temperature shale gas exploitation, comprehensively considering the influence of the characteristics of multi-cluster fracturing of multiple horizontal wells and formation temperature, the cementing cement the southwest region is taken as the research object. After exposure to different temperatures (95?C and 135?C) and for different times (5, 10 and 20 times), axial and triaxial tests with different confining pressures (0, 5 MPa, 15 MPa and 30 MPa) were carried out. The research shows that: (1) the stress-strain curve of cement stone after heat treatment can be divided into four stages: compaction, elastic, yield and post-peak stage. As the confining pressure increases, the compaction phase disappears, the yield phase increases, and we see the transition from brittle to ideal plasticity after the peak; (2) as the temperature and number of thermal cycles increase, the cohesive force decreases significantly, and the internal friction angle shows a slight increase. The elastic modulus and the peak strength decreased.


2021 ◽  
Vol 60 (1) ◽  
pp. 846-852
Author(s):  
Yang Yan-Shuang ◽  
Li Kai-Yue ◽  
Zhou Hui ◽  
Tian Hao-Yuan ◽  
Cheng Wei ◽  
...  

Abstract Computed tomography (CT) scanning technology is helpful in investigating rock materials as it can demonstrate the micro structure of rock clearly. Conventional triaxial compression tests and the corresponding graded triaxial loading tests were carried out to investigate the complex failure mechanism of the marble at the Jinping Hydropower Station. After that CT-scanning tests were done on the loaded marble specimens. The test results show that (1) the CT numbers of the specimens have a certain statistical regularity, that is, the CT numbers of the specimens under different confining pressures satisfy the Weibull distribution, as the confining pressure increases, the mean values rise while variances decrease; (2) in the two groups of tests, the average CT numbers corresponding to the conventional triaxial tests are higher than those corresponding to the graded loading tests, but the CT number variances are lower than those of the graded loading tests; and (3) according to meso-damage mechanics, the damage variables of the rock specimens were established based on the definition of CT numbers. The calculation results show that the damage variables decrease with the increase in confining pressure, the damage variables of the rock specimens in the graded loading tests are higher than those in the conventional triaxial test, and the differences between the two loading tests have grown with the increase in confining pressure.


Sign in / Sign up

Export Citation Format

Share Document