scholarly journals 5G-Oriented IoT Big Data Analysis Method System

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lei Hu ◽  
Xianling Xia

The application degree and application scope of 5G Internet of Things technology and big data analysis technology are becoming wider and wider, bringing opportunities for the development of traditional enterprises and providing technological innovation support for the development of new enterprises. Based on 5G Internet of Things technology and big data technology, this paper designs and studies an intelligent agricultural monitoring platform. We collect crop growth data and monitor crop growth status through this platform to study the 5G-oriented IoT big data analysis method system. This paper studies the data collection and storage issues involved in the huge agricultural IoT data environment. This article analyzes the specific sources of agricultural big data, the specific methods of data collection, and the methods of various database storage technologies. Combining wireless sensor network technology, large-source data processing technology, and distributed data storage technology, a method is proposed to solve the problem of rural Internet data collection and storage in the big data environment. This paper proposes a spatiotemporal block processing TSBPS to store the first detection data. The method uses spatiotemporal preblocking, data compression, and caching to significantly improve the recording speed of near real-time storage and microdetection data. In the experimental part of this article, experiments are carried out on the key parts of the IOT-HSQM system model that may limit storage or query performance. Experimental results show that this article compares TSBPS and direct writing methods. The maximum write speed increased by 79%, and the average write speed increased by 42%. The IOT-HSQM system model can meet the requirements of compiling and query performance and statistical analysis.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xianzhi Tang ◽  
Chunyan Ding

The progress of the social economy and the rapid development of the power field have created more favorable conditions for the construction of my country’s power grid. In this network age, how to further realize the connection between the power system and the Internet of Things is the key content of many scholars’ research. In the Internet of Things environment, there have been many excellent results in the collection, storage, and management of electric power big data, but the problem of information security has not been completely solved. Based on big data analysis and Internet of Things technology, this paper studies the architecture design of power information security terminals. In view of the diverse types of power grid mobile information and the large amount of data, this paper designs a power transportation mobile information security management system structure, which improves the effective management of power data by the system through big data, smart sensors, and wireless communication technology. According to the experiment, the power information security terminal constructed in this paper can effectively reduce communication resources and save communication costs in the process of aggregating multidimensional data. In the user satisfaction survey, residents’ satisfaction with the convenience and safety of the intelligent power system is also as high as 9.312 and 9.233. On the whole, the application of big data and Internet of Things technology to the construction of power information security terminals can indeed improve the service efficiency of power companies under the premise of ensuring safety and allow users to have a better experience.


2014 ◽  
Vol 1 (2) ◽  
pp. 293-314 ◽  
Author(s):  
Jianqing Fan ◽  
Fang Han ◽  
Han Liu

Abstract Big Data bring new opportunities to modern society and challenges to data scientists. On the one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This paper gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogenous assumptions in most statistical methods for Big Data cannot be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771772181 ◽  
Author(s):  
Seok-Woo Jang ◽  
Gye-Young Kim

This article proposes an intelligent monitoring system for semiconductor manufacturing equipment, which determines spec-in or spec-out for a wafer in process, using Internet of Things–based big data analysis. The proposed system consists of three phases: initialization, learning, and prediction in real time. The initialization sets the weights and the effective steps for all parameters of equipment to be monitored. The learning performs a clustering to assign similar patterns to the same class. The patterns consist of a multiple time-series produced by semiconductor manufacturing equipment and an after clean inspection measured by the corresponding tester. We modify the Line, Buzo, and Gray algorithm for classifying the time-series patterns. The modified Line, Buzo, and Gray algorithm outputs a reference model for every cluster. The prediction compares a time-series entered in real time with the reference model using statistical dynamic time warping to find the best matched pattern and then calculates a predicted after clean inspection by combining the measured after clean inspection, the dissimilarity, and the weights. Finally, it determines spec-in or spec-out for the wafer. We will present experimental results that show how the proposed system is applied on the data acquired from semiconductor etching equipment.


2018 ◽  
Vol 24 (3) ◽  
pp. 1078-1094 ◽  
Author(s):  
Khalim Amjad Meerja ◽  
Praveen V. Naidu ◽  
Sri Rama Krishna Kalva

2020 ◽  
Vol 6 (4) ◽  
pp. 45-53
Author(s):  
Marimuthu Palaniswami ◽  
Aravinda S. Rao ◽  
Dheeraj Kumar ◽  
Punit Rathore ◽  
Sutharshan Rajasegarar

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Lin

In the big data environment, the visualization technique has been increasingly adopted to mine the data on library and information (L&I), with the diversification of data sources and the growth of data volume. The previous research into the information association of L&I visualization network rarely tries to construct such a network or explore the information association of the network. To overcome these defects, this paper explores the visualization of L&I from the perspective of big data analysis and fusion. Firstly, the authors analyzed the topology of the L&I visualization network and calculated the metrics for the construction of L&I visualization topology map. Next, the importance of meta-paths of the L&I visualization network was calculated. Finally, a complex big data L&I visualization network was established, and the associations between information nodes were analyzed in detail. Experimental results verify the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document