scholarly journals Optimizing the Characteristics of the Laser Hardfacing Process Parameters to Maximize the Wear Resistance of Ni-Based Hard-Faced Deposits Using the RSM Technique

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
S. Gnanasekaran ◽  
Samson Jerold Samuel Chelladurai ◽  
T. Ramakrishnan ◽  
S Sivananthan ◽  
G. Padmanaban ◽  
...  

The nickel-based Colmonoy-5 hardfacing alloy is used to hard-face 316LN austenitic stainless steel components in fast reactors. The nominal composition (in wt%) was listed as follows: 0.01 C, 0.49 Si, 0.87 Mn, 17.09 Cr, 14.04 Ni, 2.56 Mo, 0.14 N, and balance Fe. Hardfacing is a technique of applying hard and wear-resistant materials to substrates that need abrasion resistance. The thickness of hardfacing deposit varies between 0.8 mm and 2 mm based on parameter combinations. In this study, laser hardfacing process parameters including laser power, powder feed rate, travel speed, and defocusing distance were optimized to reduce weight loss of laser hard-faced Ni-based deposit. The tribological characteristics of reactor-grade NiCr-B hard-faced deposits were investigated. The RSM technique was used to identify the most important control variables resulting in the least weight loss of the nickel-based alloy placed on AISI 316LN austenitic stainless steel. Statistical techniques like DoE and ANOVA are utilized. Changing the laser settings may efficiently track the weight loss of laser hard-faced nickel alloy surfaces. These are created using the response surface technique. The deposit produced with a laser power of 1314 W, powder feed rate of 9 g/min, travel speed of 366 mm/min, and defocusing distance of 32 mm had the lowest weight loss of 16.4 mg. Based on the F value, the powder feed rate is the major influencing factor to predict the hardness followed by power, travel speed, and defocusing distance.

Author(s):  
Sunil Yadav ◽  
Christ P. Paul ◽  
Arackal N. Jinoop ◽  
Saurav K. Nayak ◽  
Arun K. Rai ◽  
...  

Abstract Laser Additive Manufacturing (LAM) is an advanced manufacturing processes for fabricating engineering components directly from CAD Model by depositing material in a layer by layer fashion using lasers. LAM is being widely deployed in various sectors such as power, aerospace, automotive etc. for fabricating complex shaped and customized components. One of the most commonly used LAM process is Directed Energy Deposition (LAM-DED) which is used for manufacturing near net shaped components with tailored microstructure, multi-materials (direct and graded) and complex geometry. This paper reports experimental investigation of LAM of Copper (Cu) tracks on Stainless Steel 304 L (SS 304L) using an indigenously developed LAM-DED system. Cu-SS304L joints find wider applications in tooling, automotive and aerospace sectors due to its combination of higher strength, thermal conductivity and corrosion resistance. However, laying Cu layers on SS304L is not trivial due to large difference in the thermo-physical properties. Thus, a comprehensive experiments using full factorial design are carried out and a number of Cu tracks were laid on SS304L substrate by varying laser power, scan speed and powder feed rate. The laid tracks are characterized for track geometry and porosity and the quality of the tracks are analyzed. Lower values of laser power and higher powder feed rate results in discontinuous deposition, while higher laser power and lower powder feed rate results in cracked deposits. Porosity is observed to vary from 6–45 % at different process conditions. Analysis of Variance (ANOVA) of deposition rate and track geometry is performed to estimate the major contributing process parameters. This study paves a way to understand effect of process parameters on LAM-DED for fabricating bimetallic joints and graded structures of Copper and SS304L.


Author(s):  
K Benarji ◽  
Y Ravi Kumar ◽  
CP Paul ◽  
AN Jinoop ◽  
KS Bindra

In the present work, parametric investigation and characterization of stainless steel 316 (SS316) built by laser-assisted directed energy deposition (L-DED) is performed. Single-track L-DED experiments are carried by varying laser power, scanning speed, and powder feed rate using full factorial experimental design. The effect of L-DED process parameters on the track geometry, deposition rate, and microhardness is investigated, and three different combinations of process parameters yielding maximum deposition rate and hardness are identified for bulk investigation. The identified process parameters are laser power of 1000 W, powder feed rate of 8 g/min, and scanning speed of 0.4 m/min, 0.5 m/min, and 0.6 m/min. The austenitic phase [Formula: see text] is detected at all the conditions. However, ferrite [Formula: see text] peak is observed at 0.6 m/min due to microsegregation and thermal gradients. The minimum crystallite size is estimated to be 24.88 nm at 0.6 m/min. The porosity and microstructure analysis is carried out by optical microscopic images. The fine columnar dendritic structure is observed in L-DED samples at all conditions. An average microhardness of 317.4 HV0.98 N is obtained at 0.4 m/min, and it is observed that microhardness reduces with an increase in scanning speed mainly due to increase in lack of fusion and porosity. Tribology studies are carried out at different values of normal load and sliding velocity. The minimum specific wear rate of 0.02497 × 10−4 mm3/Nm is observed at scanning speed of 0.4 m/min. Scanning electron microscope of the wear tracks analysis shows abrasive wear as the major wear mechanism. This study provides a path for building SS316 components for various engineering applications.


Author(s):  
Peter Kayode Farayibi

Laser deposition is an advanced manufacturing technology capable of enhancing service life of engineering components by hard-facing their functional surfaces. There are quite a number of parameters involved in the process and also desirable output characteristics. These output characteristics are often independently optimised and which may lead to poor outcome for other characteristics, hence the need for multi-objective optimisation of all the output characteristics. In this study, a laser deposition of Ti-6Al-4V wire and tungsten carbide powder was made on a Ti-6Al-4V substrate with a view to achieve a metallurgical bonded metal matrix composite on the substrate. Single clads were deposited with a desire to optimise the composite clad characteristics (height, width and reinforcement fraction) for the purpose of surface coating. Processing parameters (laser power, traverse speed, wire feed rate, powder feed rate) were varied, the experiment was planned using Taguchi method and output characteristics were analysed using principal component analysis approach. The results indicated that the parameters required for optimised clad height, width, and reinforcement fraction necessary for surface coating is laser power of 1800 W, traverse speed of 200 mm/min, wire feed rate 700 mm/min and powder feed rate of 30 g/min. The powder feed rate was found to most significantly contribute 43.99%, followed by traverse speed 39.77%, laser power 15.87% with wire feed rate having the least contribution towards the multi-objective optimisation. Confirmation results showed that clad width and reinforcement fraction were significantly improved by the optimised parameters. The multi-objective optimisation procedure is a useful tool necessary to identify the process factors required to enhance output characteristics in laser processing.


MRS Advances ◽  
2017 ◽  
Vol 2 (26) ◽  
pp. 1381-1386 ◽  
Author(s):  
Takeshi Okuno ◽  
Yasuyuki Kaneno ◽  
Takuto Yamaguchi ◽  
Takayuki Takasugi ◽  
Satoshi Semboshi ◽  
...  

ABSTRACTNi base intermetallic alloy coating was fabricated by laser cladding, controlling the laser power and powder feed rate. Atomized powder of the Ni base intermetallic alloy was laser-cladded on the substrate of stainless steel 304. The hardness and microstructure of the clad layers were investigated by Vickers hardness test, SEM, XRD and TEM observations. The hardness of the cladding layer was affected by the dilution with the substrate; it increased with decreasing laser power and increasing powder feed rate. By optimizing the dilution with the substrate, the cladding layer with an almost identical hardness level to that of the Ni base intermetallic alloy fabricated by ingot metallurgy was obtained. The TEM observations revealed that a very fine-sized microstructure composed of Ni3Al and Ni3V was partially formed even in the as-cladded state. After annealing, the two-phase microstructure composed of Ni3Al and Ni3V was developed in the cladding layer, resulting in enhanced hardness in the cladding layers fabricated in the majority of cladding conditions.


Author(s):  
Fanrong Kong ◽  
Radovan Kovacevic

The present work studies the heat and mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A solid-liquid-gas unified transient model was developed to investigate the evolution of temperature distribution and flow velocity of the liquid phase in the molten pool. In this model, an enthalpy-porosity approach was applied to deal with the solidification and melting occurring in the clad, and a level-set method was used to track the evolution of the molten pool free surface. Moreover, heat loss due to forced convection and heat radiation and laser heat input occurring on the top surface of deposited layer and substrate have been incorporated into the source term of governing equations. The effects of laser power, scanning speed, and powder feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurement. The results show that increasing the laser power and powder feed rate, or reducing the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.


2017 ◽  
Vol 267 ◽  
pp. 243-247 ◽  
Author(s):  
Marek Góral ◽  
Tadeusz Kubaszek

Thermal Barrier Coatings (TBC) is the most advanced system for protection of turbine blades and vanes against high temperature, and oxidation. They are used in most advanced jet engines. In present article the new Plasma Spray Physical Vapour Deposition Technology was used to obtain yttria stabilized zirconia oxide coating with columnar structure. In research the different process parameters were changed. It was observed that powder feed rate had big influence on coating thickness. The large amount of Ar in plasma gasses combined with high powder feed rate resulted in partial evaporation of ceramic powder and splat-type structure. The same effect was observed when the power current was decreased form 2400 to 1600 A as well as pressure was increased to 200 Pa when the powder feed rate was 30 g/min. The obtained results showed that full evaporation of ceramic powder requires very low feed rate of ceramic material (2 g/min), high power current and high He content into plasma.


2020 ◽  
Vol 321 ◽  
pp. 03019
Author(s):  
C. Hicks ◽  
T. Konkova ◽  
P. Blackwell

Laser Metal Deposition (LMD) is promoting increased interest with regard to manufacturing parts of complex geometry. It is especially important with respect to manufacturing cost reductions for relatively expensive Titanium alloys. The rapid and directional cooling processes inherent with LMD produce nonhomogeneous microstructures and large residual stresses. Knowledge of the LMD process to optimise deposited microstructures is in high demand. The high-strength β-Titanium alloy, Ti-5Al-5Mo-5V-3Cr (Ti-5553), was deposited using LMD on to a heat-treated substrate of the same alloy. Two blocks of 15 x 15 x 6.4 mm3 were made with different laser power to powder feed rate ratios followed by microstructural analyses. Both blocks have almost identical geometry and density. Low ratios of laser power to powder feed rate resulted in pure β phase in the deposited layers and the re-melted material in the substrate. High ratios resulted in larger columnar β grains, the precipitation of nano-scaled α, and a pronounced increase in microhardness ≈1 mm above and below the substrate interface. This could be detrimental to the mechanical properties of the substrate and highlights the importance of the optimisation of LMD parameters.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 728 ◽  
Author(s):  
Yu ◽  
Sun ◽  
Huang ◽  
Wang ◽  
Wang ◽  
...  

This paper aimed to establish a nonlinear relationship between laser cladding process parameters and the crack density of a high-hardness, nickel-based laser cladding layer, and to control the cracking of the cladding layer via an intelligent algorithm. By using three main process parameters (overlap rate, powder feed rate, and scanning speed), an orthogonal experiment was designed, and the experimental results were used as training and testing datasets for a neural network. A neural network prediction model between the laser cladding process parameters and coating crack density was established, and a genetic algorithm was used to optimize the prediction results. To improve their prediction accuracy, genetic algorithms were used to optimize the weights and thresholds of the neural networks. In addition, the performance of the neural network was tested. The results show that the order of influence on the coating crack sensitivity was as follows: overlap rate > powder feed rate > scanning speed. The relative error between the predicted value and the experimental value of the three-group test genetic algorithm-optimized neural network model was less than 9.8%. The genetic algorithm optimized the predicted results, and the technological parameters that resulted in the smallest crack density were as follows: powder feed rate of 15.0726 g/min, overlap rate of 49.797%, scanning speed of 5.9275 mm/s, crack density of 0.001272 mm/mm2. Therefore, the amount of crack generation was controlled by the optimization of the neural network and genetic algorithm process.


Sign in / Sign up

Export Citation Format

Share Document