scholarly journals Visual Mechanism Characteristics of Static Painting Based on PSO-BP Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hai Wang ◽  
Hongtao Zhang

Static painting works have independent theme significance in the framework of Chinese painting history, and their overall structure, lightness structure, and color structure all show different characteristics of visual mechanism. In order to extract the visual mechanism features effectively, this experiment uses the PSO algorithm to optimize the BP neural network, constructs the PSO-BP neural network for feature recognition and extraction, and compares it with the training results of other algorithms. The results show that the prediction accuracy, recognition accuracy, and ROC curve of PSO-BP neural network are high, which shows that the convergence of PSO-BP neural network is good, and it can effectively complete the recognition and analysis of people and effectively extract the visual mechanism features of static writing paintings.

2022 ◽  
Vol 12 (2) ◽  
pp. 757
Author(s):  
Xiaofeng Wang ◽  
Baochang Liu ◽  
Jiaqi Yun ◽  
Xueqi Wang ◽  
Haoliang Bai

The connection between the steel joint and aluminum alloy pipe is the weak part of the aluminum alloy drill pipe. Practically, the interference connection between the aluminum alloy rod and the steel joint is usually realized by thermal assembly. In this paper, the relationship between the cooling water flow rate, initial heating temperature and the thermal deformation of the steel joint in interference thermal assembly was studied and predicted. Firstly, the temperature data of each measuring point of the steel joint were obtained by a thermal assembly experiment. Based on the theory of thermoelasticity, the analytical solution of the thermal deformation of the steel joint was studied. The temperature function was fitted by the least square method, and the calculated value of radial thermal deformation of the section was finally obtained. Based on the BP neural network algorithm, the thermal deformation of steel joint section was predicted. Besides, a prediction model was established, which was about the relationship between cooling water flow rate, initial heating temperature and interference. The magnitude of interference fit of steel joint was predicted. The magnitude of the interference fit of the steel joint was predicted. A polynomial model, exponential model and Gaussian model were adopted to predict the sectional deformation so as to compare and analyze the predictive performance of a BP neural network, among which the polynomial model was used to predict the magnitude of the interference fit. Through a comparative analysis of the fitting residual (RE) and sum of squares of the error (SSE), it can be known that a BP neural network has good prediction accuracy. The predicted results showed that the error of the prediction model increases with the increase of the heating temperature in the prediction model of the steel node interference and related factors. When the cooling water velocity hit 0.038 m/s, the prediction accuracy was the highest. The prediction error increases with the increase or decrease of the velocity. Especially when the velocity increases, the trend of error increasing became more obvious. The analysis shows that this method has better prediction accuracy.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoyu Wang ◽  
Kan Yang ◽  
Changsong Shen

Displacement is an important physical quantity of hydraulic structures deformation monitoring, and its prediction accuracy is the premise of ensuring the safe operation. Most existing metaheuristic methods have three problems: (1) falling into local minimum easily, (2) slowing convergence, and (3) the initial value’s sensitivity. Resolving these three problems and improving the prediction accuracy necessitate the application of genetic algorithm-based backpropagation (GA-BP) neural network and multiple population genetic algorithm (MPGA). A hybrid multiple population genetic algorithm backpropagation (MPGA-BP) neural network algorithm is put forward to optimize deformation prediction from periodic monitoring surveys of hydraulic structures. This hybrid model is employed for analyzing the displacement of a gravity dam in China. The results show the proposed model is superior to an ordinary BP neural network and statistical regression model in the aspect of global search, convergence speed, and prediction accuracy.


2020 ◽  
Vol 10 (8) ◽  
pp. 2926
Author(s):  
Yanzhen Chen ◽  
Yihuai Hu ◽  
Shenglong Zhang ◽  
Xiaojun Mei ◽  
Qingguo Shi

In order to accurately predict the erosion effect of underwater cleaning with an angle nozzle under different working conditions, this paper uses refractory bricks to simulate marine fouling as the erosion target, and studies the optimized erosion prediction model by erosion test based on the submerged low-pressure water jet. The erosion test is conducted by orthogonal experimental design, and experimental data are used for the prediction model. By combining with statistical range and variance analysis methods, the jet pressure, impact time and jet angle are determined as three inputs of the prediction model, and erosion depth is the output index of the prediction model. A virtual data generation method is used to increase the amount of input data for the prediction model. This paper also proposes a Mind-evolved Advanced Genetic Algorithm (MAGA), which has a reliable optimization effect in the verification of four stand test functions. Then, the improved back-propagating (BP) neural network prediction models are established by respectively using Genetic Algorithm (GA) and MAGA optimization algorithms to optimize the initial thresholds and weights of the BP neural network. Compared to the prediction results of the BP and GA-BP models, the R2 of the MAGA-BP model is the highest, reaching 0.9954; the total error is reduced by 47.31% and 35.01%; the root mean square error decreases by 51.05% and 31.80%; and the maximum absolute percentage error decreases by 65.79% and 64.01%, respectively. The average prediction accuracy of the MAGA-BP model is controlled within 3%, which has been significantly improved. The results show that the prediction accuracy of the MAGA-BP prediction model is higher and more reliable, and the MAGA algorithm has a good optimization effect. This optimized erosion prediction method is feasible.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yudong Li ◽  
Zhongke Feng ◽  
Shilin Chen ◽  
Ziyu Zhao ◽  
Fengge Wang

The study of forest fire prediction is of great environmental and scientific significance. China’s Guangxi Autonomous Region has a high incidence rate of forest fires. At present, there is little research on forest fires in this area. The application of the artificial neural network and support vector machines (SVM) in forest fire prediction in this area can provide data for forest fire prevention and control in Guangxi. In this paper, based on Guangxi’s 2010–2018 satellite monitoring hotspot data, meteorology, terrain, vegetation, infrastructure, and socioeconomic data, the researchers determined the main forest fire driving factors in Guangxi. They used feature selection and backpropagation neural networks and radial basis SVM to build forest fire prediction models. Finally, the researchers use the accuracy, precision, and area under the characteristic curve (ROC-AUC) and other indicators to evaluate the predictive performance of the two models. The results showed that the prediction accuracy of the BP neural network and SVM is 92.16% and 89.89%, respectively. As both results are over 85%, the requirements of prediction accuracy is met. These results can be used for forest fire prediction in the Guangxi Autonomous Region. Specifically, the accuracy of the BP neural network was 0.93, which was higher than that of the SVM model (0.89); the recall of the SVM model was 0.84, which was lower than the BANN model (0.92), and the AUC value of the SVM model was 0.95, which was lower than the BP neural network model. The obtained results confirm that the BP neural network model can provide more prediction accuracy than support vector machines and is therefore more suitable for forest fire prediction in Guangxi, China. This research provides the necessary theoretical basis and data support for application in the field of forestry of the Guangxi Autonomous Region, China.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wei He

Inventory control is a key factor for reducing supply chain cost and increasing customer satisfaction. However, prediction of inventory level is a challenging task for managers. As one of the widely used techniques for inventory control, standard BP neural network has such problems as low convergence rate and poor prediction accuracy. Aiming at these problems, a new fast convergent BP neural network model for predicting inventory level is developed in this paper. By adding an error offset, this paper deduces the new chain propagation rule and the new weight formula. This paper also applies the improved BP neural network model to predict the inventory level of an automotive parts company. The results show that the improved algorithm not only significantly exceeds the standard algorithm but also outperforms some other improved BP algorithms both on convergence rate and prediction accuracy.


2013 ◽  
Vol 724-725 ◽  
pp. 623-629
Author(s):  
Xing Jie Liu ◽  
Wen Shu Zheng ◽  
Tian Yun Cen

Accurate wind speed forecasting of wind farm is of great significance in economic security and stability of the grid. In order to improve the prediction accuracy, the paper first proposed a spatio-temporal correlation predictor method. Based on physical characteristics of wind speed evolution, the method looked for the wind speed and direction information at sites close to the target prediction site, and established STCP model to forecast. And then we established the BP neural network to finish multi-step forecast with wind speed time series of target forecast site .Last, two methods were combined to form STCP-BP method. Simulation tests are conducted with operation data from certain wind farm group in China and results show that STCP-BP method can effectively improve the prediction accuracy compared with BP model.


2015 ◽  
Vol 733 ◽  
pp. 898-901 ◽  
Author(s):  
Hong Li ◽  
Xue Ding

Optimization problem is the problem which can be often encountered mostly in industrial design, and the key of optimization is to find the global optimum and higher constriction speed. This paper proposes a PSO algorithm based on BP neural network by neural network trains and selects individual extreme best randomly, to make the particle follow the optimal particle in the solution space search, and obtain the optimum extreme best in the whole situation. Through the application of the simulation experiment on image segmentation showed that the algorithm is suitable in dealing with multiple types function and constraint, with fast convergence speed, and easy combination with traditional optimization methods, thus improving its own limitations, and solving problems more efficiently.


Sign in / Sign up

Export Citation Format

Share Document