scholarly journals Optimization and Simulation of Virtual Experiment System of Human Sports Science Based on VR

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Gaixin Li

Virtual reality technology is an emerging technology developed on the basis of information technology. It is widely used in military, medical, mining, entertainment, and other fields. Therefore, many countries have been vigorously conducting research in recent years. As one of the important components of the virtual reality system, the three-dimensional human motion tracking system is of great significance to the research of practical virtual reality systems. It introduces the measurement principle of the spatial three-dimensional coordinate dynamic measurement device and discusses in detail the ultrasonic transmission, reception, amplification, filtering, comparison, shaping circuit, and single-chip interface circuit. This paper introduces the working principle and characteristics of the virtual experiment system and gives the structure diagram, hardware schematic diagram, and software flow diagram of the system. We mainly study the method of tracking human motion by measuring the three-dimensional coordinates of the space point, which lays a good foundation for the research of the actual three-dimensional motion tracking system. At the same time, the three-dimensional human body modeling is discussed, and the interactive movement policy of the human arm is briefly introduced. It has a certain effect on the actual virtual reality human-computer interaction system.

2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773275 ◽  
Author(s):  
Francisco J Perez-Grau ◽  
Fernando Caballero ◽  
Antidio Viguria ◽  
Anibal Ollero

This article presents an enhanced version of the Monte Carlo localization algorithm, commonly used for robot navigation in indoor environments, which is suitable for aerial robots moving in a three-dimentional environment and makes use of a combination of measurements from an Red,Green,Blue-Depth (RGB-D) sensor, distances to several radio-tags placed in the environment, and an inertial measurement unit. The approach is demonstrated with an unmanned aerial vehicle flying for 10 min indoors and validated with a very precise motion tracking system. The approach has been implemented using the robot operating system framework and works smoothly on a regular i7 computer, leaving plenty of computational capacity for other navigation tasks such as motion planning or control.


2018 ◽  
Vol 198 ◽  
pp. 04010
Author(s):  
Zhonghao Han ◽  
Lei Hu ◽  
Na Guo ◽  
Biao Yang ◽  
Hongsheng Liu ◽  
...  

As a newly emerging human-computer interaction, motion tracking technology offers a way to extract human motion data. This paper presents a series of techniques to improve the flexibility of the motion tracking system based on the inertial measurement units (IMUs). First, we built a most miniatured wireless tracking node by integrating an IMU, a Wi-Fi module and a power supply. Then, the data transfer rate was optimized using an asynchronous query method. Finally, to simplify the setup and make the interchangeability of all nodes possible, we designed a calibration procedure and trained a support vector machine (SVM) model to determine the binding relation between the body segments and the tracking nodes after setup. The evaluations of the whole system justify the effectiveness of proposed methods and demonstrate its advantages compared to other commercial motion tracking system.


2010 ◽  
Vol 43 (7) ◽  
pp. 1437-1440 ◽  
Author(s):  
Joshua T. Weinhandl ◽  
Brian S.R. Armstrong ◽  
Todd P. Kusik ◽  
Robb T. Barrows ◽  
Kristian M. O’Connor

Sign in / Sign up

Export Citation Format

Share Document