scholarly journals Automatic Segmentation Algorithm of Magnetic Resonance Image in Diagnosis of Liver Cancer Patients under Deep Convolutional Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinling Zhang ◽  
Jun Yang ◽  
Min Zhao

To study the influence of different sequences of magnetic resonance imaging (MRI) images on the segmentation of hepatocellular carcinoma (HCC) lesions, the U-Net was improved. Moreover, deep fusion network (DFN), data enhancement strategy, and random data (RD) strategy were introduced, and a multisequence MRI image segmentation algorithm based on DFN was proposed. The segmentation experiments of single-sequence MRI image and multisequence MRI image were designed, and the segmentation result of single-sequence MRI image was compared with those of convolutional neural network (FCN) algorithm. In addition, RD experiment and single-input experiment were also designed. It was found that the sensitivity (0.595 ± 0.145) and DSC (0.587 ± 0.113) obtained by improved U-Net were significantly higher than the sensitivity (0.405 ± 0.098) and DSC (0.468 ± 0.115, P < 0.05 ) obtained by U-Net. The sensitivity of multisequence MRI image segmentation algorithm based on DFN (0.779 ± 0.015) was significantly higher than that of FCN algorithm (0.604 ± 0.056, P < 0.05 ). The multisequence MRI image segmentation algorithm based on the DFN had higher indicators for liver cancer lesions than those of the improved U-Net. When RD was added, it not only increased the DSC of the single-sequence network enhanced by the hepatocyte-specific magnetic resonance contrast agent (Gd-EOB-DTPA) by 1% but also increased the DSC of the multisequence MRI image segmentation algorithm based on DFN by 7.6%. In short, the improved U-Net can significantly improve the recognition rate of small lesions in liver cancer patients. The addition of RD strategy improved the segmentation indicators of liver cancer lesions of the DFN and can fuse image features of multiple sequences, thereby improving the accuracy of lesion segmentation.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hujun Liu ◽  
Hui Gao ◽  
Fei Jia

There was an investigation of the auxiliary role of convolutional neural network- (CNN-) based magnetic resonance imaging (MRI) image segmentation algorithm in MRI image-guided targeted drug therapy of doxorubicin nanomaterials so that the value of drug-controlled release in liver cancer patients was evaluated. In this study, 80 patients with liver cancer were selected as the research objects. It was hoped that the CNN-based MRI image segmentation algorithm could be applied to the guided analysis of MRI images of the targeted controlled release of doxorubicin nanopreparation to analyze the imaging analysis effect of this algorithm on the targeted treatment of liver cancer with doxorubicin nanopreparation. The results of this study showed that the upgraded three-dimensional (3D) CNN-based MRI image segmentation had a better effect compared with the traditional CNN-based MRI image segmentation, with significant improvement in indicators such as accuracy, precision, sensitivity, and specificity, and the differences were all statistically marked ( p < 0.05 ). In the monitoring of the targeted drug therapy of doxorubicin nanopreparation for liver cancer patients, it was found that the MRI images of liver cancer patients processed by 3D CNN-based MRI image segmentation neural algorithm could be observed more intuitively and guided to accurately reach the target of liver cancer. The accuracy of targeted release determination of nanopreparation reached 80 ± 6.25%, which was higher markedly than that of the control group (66.6 ± 5.32%) ( p < 0.05 ). In a word, the MRI image segmentation algorithm based on CNN had good application potential in guiding patients with liver cancer for targeted therapy with doxorubicin nanopreparation, which was worth promoting in the adjuvant treatment of targeted drugs for cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Feng-Ping An ◽  
Zhi-Wen Liu

With the development of computer vision and image segmentation technology, medical image segmentation and recognition technology has become an important part of computer-aided diagnosis. The traditional image segmentation method relies on artificial means to extract and select information such as edges, colors, and textures in the image. It not only consumes considerable energy resources and people’s time but also requires certain expertise to obtain useful feature information, which no longer meets the practical application requirements of medical image segmentation and recognition. As an efficient image segmentation method, convolutional neural networks (CNNs) have been widely promoted and applied in the field of medical image segmentation. However, CNNs that rely on simple feedforward methods have not met the actual needs of the rapid development of the medical field. Thus, this paper is inspired by the feedback mechanism of the human visual cortex, and an effective feedback mechanism calculation model and operation framework is proposed, and the feedback optimization problem is presented. A new feedback convolutional neural network algorithm based on neuron screening and neuron visual information recovery is constructed. So, a medical image segmentation algorithm based on a feedback mechanism convolutional neural network is proposed. The basic idea is as follows: The model for obtaining an initial region with the segmented medical image classifies the pixel block samples in the segmented image. Then, the initial results are optimized by threshold segmentation and morphological methods to obtain accurate medical image segmentation results. Experiments show that the proposed segmentation method has not only high segmentation accuracy but also extremely high adaptive segmentation ability for various medical images. The research in this paper provides a new perspective for medical image segmentation research. It is a new attempt to explore more advanced intelligent medical image segmentation methods. It also provides technical approaches and methods for further development and improvement of adaptive medical image segmentation technology.


2019 ◽  
Vol 56 (9) ◽  
pp. 091003
Author(s):  
谭光鸿 Tan Guanghong ◽  
侯进 Hou Jin ◽  
韩雁鹏 Han Yanpeng ◽  
罗朔 Luo Shuo

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lihong Han ◽  
Li Liu ◽  
Yankun Hao ◽  
Lan Zhang

The purpose of this paper is to explore the impact of magnetic resonance imaging (MRI) image features based on convolutional neural network (CNN) algorithm and conditional random field on the diagnosis and mental state of patients with severe stroke. 208 patients with severe stroke who all received MRI examination were recruited as the research objects. According to cerebral small vascular disease (CSVD) score, the patients were divided into CSVD 0∼4 groups. The patients who completed the three-month follow-up were classified into cognitive impairment group (124 cases) and the noncognitive impairment group (84 cases) according to the cut-off point of the Montreal cognitive assessment (MOCA) scale score of 26. A novel image segmentation algorithm was proposed based on U-shaped fully CNN (U-Net) and conditional random field, which was compared with the fully CNN (FCN) algorithm and U-Net algorithm, and was applied to the MRI segmentation training of patients with severe stroke. It was found that the average symmetric surface distance (ASSD) (3.13 ± 1.35), Hoffman distance (HD) (28.71 ± 9.05), Dice coefficient (0.78 ± 1.35), accuracy (0.74 ± 0.11), and sensitivity (0.85 ± 0.13) of the proposed algorithm were superior to those of FCN algorithm and U-Net algorithm. There were significant differences in the MOCA scores among the five groups of patients from CSVD 0 to CSVD 4 in the three time periods (0, 1, and 3 months) ( P < 0.05 ). Differences in cerebral microhemorrhage (CMB), perivascular space (PVS), and number of cavities, Fazekas, and total CSVD scores between the two groups were significant ( P < 0.05 ). Multivariate regression found that the number of PVS, white matter hyperintensity (WMH) Fazekas, and total CSVD score were independent factors of cognitive impairment. In short, MRI images based on deep learning image segmentation algorithm had good application value for clinical diagnosis and treatment of stroke and can effectively improve the detection effect of brain domain characteristics and psychological state of patients after stroke.


2012 ◽  
Vol 155-156 ◽  
pp. 861-866 ◽  
Author(s):  
Bei Ji Zou ◽  
Hao Yu Zhou ◽  
Zai Liang Chen ◽  
Hao Chen ◽  
Guo Jiang Xin

A new welding seam image segmentation method based on pulse-coupled neural network (PCNN) is presented in this paper. The method segments image by utilizing PCNN’s specific feature that the fire of one neuron can capture firing of its adjacent neurons due to their spatial proximity and intensity similarity. The method can automatically confirm the best iteration times by comparing the maximum of variance ratio and get the best segmentation results. Experimental results show that the proposed method has good performance in both results and execution efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yong Hu ◽  
Jie Tang ◽  
Shenghao Zhao ◽  
Ye Li

In order to improve the efficiency of early imaging diagnosis of patients with osteosarcoma and the effect of neoadjuvant chemotherapy based on the results of imaging examinations, 48 patients with suspected osteosarcoma were selected as the research objects and their diffusion-weighted imaging (DWI)-magnetic resonance imaging (MRI) images were regularized in this study. Then, a DWI-MRI image discrimination model was established based on the class-structured deep convolutional neural network (CSDCNN) algorithm. The peak signal-to-noise ratio (PSNR), mean square error (MSE), and edge preserve index (EPI) were applied to evaluate the image quality after processing by the CSDCNN algorithm; the accuracy, recall rate, precise rate, and F1 score were employed to evaluate the diagnostic efficiency of CSDCNN algorithm; the apparent diffusion coefficient (ADC) was adopted to evaluate the therapeutic effect of neoadjuvant chemotherapy based on the CSDCNN algorithm, and SegNet, LeNet, and AlexNet algorithms were introduced for comparison. The results showed that the PSNR, MSE, and EPI values of DWI-MRI images of patients with osteosarcoma were 29.1941, 0.0016, and 0.9688, respectively, after using the CSDCNN algorithm to process the DWI-MRI images. The three indicators were significantly better than other algorithms, and the difference was statistically significant ( P < 0.05 ). According to the results of imaging diagnosis of patients with osteosarcoma, there was no significant difference between the assisted diagnosis effect of the CSDCNN algorithm and the pathological examination results ( P > 0.05 ). The results of adjuvant chemotherapy based on the CSDCNN algorithm found that the ADCmean value of the patients after chemotherapy was 1.66 ± 0.17 and the ADCmin value was 1.33 ± 0.15; the two indicators were significantly higher than other algorithms, and the difference was statistically significant ( P < 0.05 ). In conclusion, the CSDCNN algorithm had a good effect on DWI-MRI image processing of patients with osteosarcoma, which could improve the diagnostic accuracy of patients with osteosarcoma. Moreover, the diagnosis results based on this algorithm could achieve better neoadjuvant chemotherapy effects and assist clinicians in imaging diagnosis and clinical treatment of patients with osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document