scholarly journals Sensor Duty Cycle for Prolonging Network Lifetime Using Quantum Clone Grey Wolf Optimization Algorithm in Industrial Wireless Sensor Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yang Liu ◽  
Jing Xiao ◽  
Chaoqun Li ◽  
Hu Qin ◽  
Jie Zhou

The application of industrial wireless sensor networks (IWSNs) frequently appears in modern industry, and it is usually to deploy a large quantity of sensor nodes in the monitoring area. This way of deployment improves the robustness of the IWSNs but introduces many redundant nodes, thereby increasing unnecessary overhead. The purpose of this paper is to increase the lifetime of IWSNs without changing the physical facilities and ensuring the coverage of sensors as much as possible. Therefore, we propose a quantum clone grey wolf optimization (QCGWO) algorithm, design a sensor duty cycle model (SDCM) based on real factory conditions, and use the QCGWO to optimize the SDCM. Specifically, QCGWO combines the concept of quantum computing and the clone operation for avoiding the algorithm from falling into a local optimum. Subsequently, we compare the proposed algorithm with the genetic algorithm (GA) and simulated annealing (SA) algorithm. The experimental results suggest that the lifetime of the IWSNs based on QCGWO is longer than that of GA and SA, and the convergence speed of QCGWO is also faster than that of GA and SA. In comparison with the traditional IWSN working mode, our model and algorithm can effectively prolong the lifetime of IWSNs, thus greatly reducing the maintenance cost without replacing sensor nodes in actual industrial production.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yong Zhang ◽  
Li Cao ◽  
Yinggao Yue ◽  
Yong Cai ◽  
Bo Hang

The coverage optimization problem of wireless sensor network has become one of the hot topics in the current field. Through the research on the problem of coverage optimization, the coverage of the network can be improved, the distribution redundancy of the sensor nodes can be reduced, the energy consumption can be reduced, and the network life cycle can be prolonged, thereby ensuring the stability of the entire network. In this paper, a novel grey wolf algorithm optimized by simulated annealing is proposed according to the problem that the sensor nodes have high aggregation degree and low coverage rate when they are deployed randomly. Firstly, the mathematical model of the coverage optimization of wireless sensor networks is established. Secondly, in the process of grey wolf optimization algorithm, the simulated annealing algorithm is embedded into the grey wolf after the siege behavior ends and before the grey wolf is updated to enhance the global optimization ability of the grey wolf algorithm and at the same time improve the convergence rate of the grey wolf algorithm. Simulation experiments show that the improved grey wolf algorithm optimized by simulated annealing is applied to the coverage optimization of wireless sensor networks. It has better effect than particle swarm optimization algorithm and standard grey wolf optimization algorithm, has faster optimization speed, improves the coverage of the network, reduces the energy consumption of the nodes, and prolongs the network life cycle.


2021 ◽  
Author(s):  
S. Jaya Pratha ◽  
V. Asanambigai ◽  
S.R. Mugunthan

Abstract Wireless Sensor Networks (WSN) is the fundamental technology for the Internet of Things (IoT). It is a network formed from several sensor nodes to sense the changes in the environment. The nodes are battery powered that performs sensing and transmission of information to other nodes in the network. Thus, the energy of the sensor node plays a crucial role in WSN. Thus, intelligent models are anticipated to solve the network problems by optimizing or minimizing the mechanism inorder to improve the energy efficiency. In this paper, a combined meta-heuristic approach called Grey Wolf Optimization based Game theoretical Approach (GWOGA) is proposed that helps for clustering to find the best solutions for selection of aggregation points and this optimal selection of aggregation points lead the nodes to maximize its battery/lifetime. Experimental and simulation analysis shows that the GWOGA outperforms the existing models and retains the lifetime of the network.


Author(s):  
Oliver Stecklina ◽  
Peter Langendörfer ◽  
Christian Goltz

Wireless sensor nodes become more and more attractive for a broad variety of application scenarios. Wireless Sensor Networks (WSNs) can be easily deployed and they require by design low maintenance effort. But running installations are still rare, because real world requirements and environmental conditions are even today a big challenge. Especially in multi-hop networks a minimum lifetime of several years cannot be achieved globally. In this paper, the authors present a Distributed Low Duty Cycle (DLDC) based Multi-Hop Routing (MHR) protocol for Wireless Sensor Networks guaranteeing a minimum network lifetime. The authors introduce a forecast scheme to calculate the expected life of a node with a minimal effort. The authors are convinced that by using a forecast scheme the network topology and the used protocols can be easily optimized before deploying the network. The authors evaluated their forecast scheme by measuring real sensor node parameters and simulating an example network in the Castalia simulation framework. The authors demonstrated that by using the proposed scheme an energy consumption forecast with a deviation of less than three per cent can be achieved.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Zhuangbin Chen ◽  
Anfeng Liu ◽  
Zhetao Li ◽  
Young-June Choi ◽  
Hiroo Sekiya ◽  
...  

In smart Industrial Wireless Sensor Networks (IWSNs), sensor nodes usually adopt a programmable technology. These smart devices can obtain new or special functions by reprogramming: they upgrade their soft systems through receiving new version of program codes. If sensor nodes need to be upgraded, the sink node will propagate program code packets to them through “one-to-many” broadcasting, and therefore new capabilities can be obtained, forming the so-called Software Defined Network (SDN). However, due to the high volume of code packet, the constraint energy of sensor node, and the unreliable link quality of wireless network, rapidly broadcasting the code packets to all nodes in network can be a challenge issue. In this paper, a novel Energy-efficient Broadcast scheme with adjustable broadcasting radius is proposed aiming to improve the performance of network upgrade. In our scheme, the nonhotspots sensor nodes take full advantage of their residual energy caused in data collection period to improve the packet reception probability and reduce the broadcasting delay of code packet transmission by enlarging the broadcasting radius, that is, the transmitting power. The theoretical analyses and experimental results show that, compared with previous work, our approach can averagely reduce the Network Upgrade Delay (NUD) by 14.8%–45.2% and simultaneously increase the reliability without harming the lifetime of network.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 98
Author(s):  
Rajkumar Singh Rathore ◽  
Suman Sangwan ◽  
Kabita Adhikari ◽  
Rupak Kharel

Minimizing energy consumption is one of the major challenges in wireless sensor networks (WSNs) due to the limited size of batteries and the resource constrained tiny sensor nodes. Energy harvesting in wireless sensor networks (EH-WSNs) is one of the promising solutions to minimize the energy consumption in wireless sensor networks for prolonging the overall network lifetime. However, static energy harvesting in individual sensor nodes is normally limited and unbalanced among the network nodes. In this context, this paper proposes a modified echo state network (MESN) based dynamic duty cycle with optimal opportunistic routing (OOR) for EH-WSNs. The proposed model is used to act as a predictor for finding the expected energy consumption of the next slot in dynamic duty cycle. The model has adapted a whale optimization algorithm (WOA) for optimally selecting the weights of the neurons in the reservoir layer of the echo state network towards minimizing energy consumption at each node as well as at the network level. The adapted WOA enabled energy harvesting model provides stable output from the MESN relying on optimal weight selection in the reservoir layer. The dynamic duty cycle is updated based on energy consumption and optimal threshold energy for transmission and reception at bit level. The proposed OOR scheme uses multiple energy centric parameters for selecting the relay set oriented forwarding paths for each neighbor nodes. The performance analysis of the proposed model in realistic environments attests the benefits in terms of energy centric metrics such as energy consumption, network lifetime, delay, packet delivery ratio and throughput as compared to the state-of-the-art-techniques.


Author(s):  
Gaurav Kumar ◽  
Virender Ranga

The failure rate of sensor nodes in Heterogeneous Wireless Sensor Networks is high due to the use of low battery-powered sensor nodes in a hostile environment. Networks of this kind become non-operational and turn into disjoint segmented networks due to large-scale failures of sensor nodes. This may require the placement of additional highpower relay nodes. In this paper, we propose a network partition recovery solution called Grey Wolf, which is an optimizer algorithm for repairing segmented heterogeneous wireless sensor networks. The proposed solution provides not only strong bi-connectivity in the damaged area, but also distributes traffic load among the multiple deployed nodes to enhance the repaired network’s lifetime. The experiment results show that the Grey Wolf algorithm offers a considerable performance advantage over other state-of-the-art approaches.


Sign in / Sign up

Export Citation Format

Share Document