scholarly journals Frequency and Time-Domain Comparison between LCL and LLCL Filters for a Grid-Connected Inverter Using Selective Harmonic Modulation

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Rawia Chakroun ◽  
Ramzi Ben Ayed ◽  
Nabil Derbel

This paper shows a comparison between the analytical design of a photovoltaic power station filter and a real-case filter. Indeed, the analytical filter considered in the design phase is an LCL filter, while the real case is an LLCL filter. This difference could impact the current harmonics rejected on the grid and breaks grid codes. The main objective of this study is to maximize the power injected into the network while respecting the harmonic rejection standards in force, namely, G5/4, French decree of 2008, and IEEE 519 standards, by adopting a current control design to improve the performance of a grid-connected three-phase inverter, which is regarded as the central component in a photovoltaic production system. The selective harmonic modulation strategy (SHM) is a common technique to achieve this goal. For that, a frequency and a time-domain comparison for a grid-connected inverter using both filters have been highlighted. Simulation results confirm the excellent transient behavior of both filter topologies and the advantage to consider the flexibility of LLCL filter when combined with SHM strategy. This manuscript is an extension of an earlier version of “Comparison between LCL and LLCL Filters for a Grid Connected Inverter Using Selective Harmonic Modulation.”

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Yang Yu ◽  
Zengqiang Mi ◽  
Yiming Che ◽  
Tong Zhao ◽  
Yikun Xu

Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage, the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control with multivariable internal model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive control law is designed to guarantee the closed-loop system globally uniformly bounded, which is proved by a constructed Lyapunov function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal form, the correctness and effectiveness of which are verified by the simulation results.


2013 ◽  
Vol 433-435 ◽  
pp. 1183-1187 ◽  
Author(s):  
Shao Ru Zhang ◽  
Shao Yuan Li

Renewable energy resources (RES) are being increasingly connected in distribution systems by utilizing power electronic converters. However, the extensive use of power electronics has resulted in a rise in power quality (PQ) concerns faced by the utility. A novel control strategy implementing reference compensation current was proposed in this paper. So that these grid-connected inverters can achieve maximum benefits when they installed in 3-phase 4-wire distribution systems. The inverter is controlled to perform as a multi-function device by incorporating active power filter functionality. The inverter can thus be utilized as: 1) power converter to transfer active power from RES to the grid, and 2) load reactive power demand support; 3) current harmonics compensation at PCC; and 4) current unbalance and neutral current compensation in case of 3-phase 4-wire system. Moreover, with adequate control of grid-interfacing inverter, all the four objectives can be accomplished either individually or simultaneously. Simulation results show the validity and capability of the novel proposed control strategy.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 876-888
Author(s):  
Yuanbin He ◽  
Bangchao Wang ◽  
Xiaogao Xie ◽  
Lei Shen ◽  
Pingliang Zeng

2019 ◽  
Vol 9 (2) ◽  
pp. 252 ◽  
Author(s):  
Ziqian Zhang ◽  
Cihan Gercek ◽  
Herwig Renner ◽  
Angèle Reinders ◽  
Lothar Fickert

This article presents an in-situ comparative analysis and power quality tests of a newly developed photovoltaic charging system for e-bikes. The various control methods of the inverter are modeled and a single-phase grid-connected inverter is tested under different conditions. Models are constituted for two current control methods; the proportional resonance and the synchronous rotating frames. In order to determine the influence of the control parameters, the system is analyzed analytically in the time domain as well as in the frequency domain by simulation. The tests indicated the resonance instability of the photovoltaic inverter. The passivity impedance-based stability criterion is applied in order to analyze the phenomenon of resonance instability. In conclusion, the phase-locked loop (PLL) bandwidth and control parameters of the current loop have a major effect on the output admittance of the inverter, which should be adjusted to make the system stable.


Sign in / Sign up

Export Citation Format

Share Document