scholarly journals Five-Echelon Multiobjective Health Services Supply Chain Modeling under Disruption

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Farnaz Javadi Gargari ◽  
Mahjoube Sayad ◽  
Seyed Ali Posht Mashhadi ◽  
Abdolhossein Sadrnia ◽  
Arman Nedjati ◽  
...  

Medicine unreliability problem is taken into consideration as one of the most important issues in health supply chain management. This research is associated with the development of a multiobjective optimization problem for the selection of suppliers and distributors. To achieve the purposes, the optimal quota allocation is determined with respect to disruption of suppliers in a five-echelon supply chain network and consideration of the distributor centers as a hub location-allocation mode. The objective of the optimization model is involved in simultaneous minimization of transactions costs dealing with suppliers, expected purchasing costs from suppliers, expected percentages of delayed and returned products in each distributor, as well as transportation cost in each echelon and fixed cost for distributor centers, and finally maximization of the expected scores for suppliers and high priority of product customers. The optimization problem is formulated as a mixed-integer nonlinear programming model. The proposed optimization model is utilized to investigate a numerical case study for asthma-specific medicines. The analyzing procedure is conducted based on the collected real data from Cobel Darou pharmaceutical company in 2019. Furthermore, a fuzzy multichoice goal programming model is considered to solve the proposed optimization model by R optimization solver. The numerical results confirmed the authenticity of the model.

2015 ◽  
Vol 741 ◽  
pp. 801-805
Author(s):  
Zhuo Dai

This research proposes a muti-echelon supply chain network design model. The model includes raw material suppliers, manufacturers, distribution centers, and customer zones. The purpose of this research is to minimize the total costs of supply chain network. The total costs include transportation cost, fixed cost, variable cost, penalty cost. This model is a mixed integer linear programming model. In general, it is very difficult to solve the model. In order to solve the model, Cplex12.6 is used. The results show that this model can be solved by this mathematical programming software well.


Author(s):  
Matineh ziari ◽  
Mohsen Sheikh Sajadieh

Closed-loop supply chains have attracted more attention by researchers and practitioners due to strong government regulations, environmental issues, social responsibilities and natural resource constraints over past few years. This paper presents a mixed-integer linear programming model to design a closed-loop supply chain network and optimizing pricing policies under random disruption. Reusing the returned products is applied as a resilience strategy to cope with the waste of energy and improving supply efficiency. Moreover, it is necessary to find the optimal prices for both final and returned products. Therefore, the model is formulated based on demand function and it maximizes total supply chain’s profit. Finally, its application is explored through using the real data of an industrial company in glass industry.


2015 ◽  
Vol 744-746 ◽  
pp. 1910-1914
Author(s):  
Zhuo Dai

This paper designs a model of muti-echelon closed-loop supply chain network (CLSC network). CLSC network includes raw material suppliers, manufacturers, distribution centers, collection centers and customer zones. The purpose of this paper is to minimize the overall costs of CLSC network. The overall costs include transportation cost, fixed cost, variable cost, penalty cost. This model is a mixed integer linear programming model. In general, it is very difficult to solve the model. Cplex12.6 is used in order to deal with this model. The results show that this model can be solved by Cplex12.6 well.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877326 ◽  
Author(s):  
Wei Zhong ◽  
Zhicai Juan ◽  
Fang Zong ◽  
Huishuang Su

Integration of urban and rural infrastructure is critical to integrating urban and rural public transport. A public transport hub is an important element of infrastructure, and it is the key facilities that serve as transferring points between cities and towns. The location of hub is related to the convenience of travel for urban and rural residents and the closeness of economic interactions between urban and rural areas. In this article, considering the background of the integration of urban and rural public transport, from the perspective of public transport hubs in urban and central town, a multi-level hub-and-spoke network is designed, and the location of integration of urban and rural public transport hub is determined. Based on the connection associated with central towns and the capacity constraints of hubs and to achieve the minimum total cost, this article proposes a mixed-integer programming model that employs a genetic and tabu search hybrid optimization algorithm to validate and analyze, which used the urban and rural public transport data from a specified area of Shandong province in China. The results indicate that the model can simultaneously determine locations for hubs in cities and central towns while minimizing total cost. The hub capacity constraint significantly influences the location of two-level hubs. The hub capacity constraint in the model can reduce the transportation cost for an entire network and optimize the transportation network. This study on urban and rural public transport hub location in a hub-and-spoke network not only reduces the transportation cost of the network but also completes and supplements the location theory of integration of urban and rural public transport.


2021 ◽  
Vol 11 (22) ◽  
pp. 10779
Author(s):  
Dan Wang ◽  
Hong Zhou

Driven by the new laws and regulations concerning the emission of greenhouse gases, it is becoming more and more popular for enterprises to adopt cleaner energy. This research proposes a novel two-echelon vehicle routing problem consisting of mixed vehicles considering battery swapping stations, which includes one depot, multiple satellites with unilateral time windows, and customers with given demands. The fossil fuel-based internal combustion vehicles are employed in the first echelon, while the electric vehicles are used in the second echelon. A mixed integer programming model for this proposed problem is established in which the total cost, including transportation cost, handling cost, fixed cost of two kinds of vehicles, and recharging cost, is minimized. Moreover, based on the variable neighborhood search, a metaheuristic procedure is developed to solve the problem. To validate its effectiveness, extensive numerical experiments are conducted over the randomly generated instances of different sizes. The computational results show that the proposed metaheuristic can produce a good logistics scheme with high efficiency.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jianxun Cui ◽  
Shi An ◽  
Meng Zhao

During real-life disasters, that is, earthquakes, floods, terrorist attacks, and other unexpected events, emergency evacuation and rescue are two primary operations that can save the lives and property of the affected population. It is unavoidable that evacuation flow and rescue flow will conflict with each other on the same spatial road network and within the same time window. Therefore, we propose a novel generalized minimum cost flow model to optimize the distribution pattern of these two types of flow on the same network by introducing the conflict cost. The travel time on each link is assumed to be subject to a bureau of public road (BPR) function rather than a fixed cost. Additionally, we integrate contraflow operations into this model to redesign the network shared by those two types of flow. A nonconvex mixed-integer nonlinear programming model with bilinear, fractional, and power components is constructed, and GAMS/BARON is used to solve this programming model. A case study is conducted in the downtown area of Harbin city in China to verify the efficiency of proposed model, and several helpful findings and managerial insights are also presented.


2017 ◽  
Vol 2 (2) ◽  
pp. 114-125 ◽  
Author(s):  
Jianfeng Zheng ◽  
Cong Fu ◽  
Haibo Kuang

Purpose This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem. Design/methodology/approach This paper develops a mixed-integer linear programming model for the authors’ proposed problem. Numerical experiments based on a realistic Asia-Europe-Oceania liner shipping network are carried out to account for the effectiveness of this model. Findings The results show that one international hub port (i.e. Rotterdam) and one regional hub port (i.e. Zeebrugge) are opened in Europe. Two international hub ports (i.e. Sokhna and Salalah) are located in Western Asia, where no regional hub port is established. One international hub port (i.e. Colombo) and one regional hub port (i.e. Cochin) are opened in Southern Asia. One international hub port (i.e. Singapore) and one regional hub port (i.e. Jakarta) are opened in Southeastern Asia and Australia. Three international hub ports (i.e. Hong Kong, Shanghai and Yokohama) and two regional hub ports (i.e. Qingdao and Kwangyang) are opened in Eastern Asia. Originality/value This paper proposes a hierarchical hub location problem, in which the authors distinguish between regional and international hub ports in liner shipping. Moreover, scale economies in ship size are considered. Furthermore, the proposed problem introduces the main ports.


2019 ◽  
Vol 59 (6) ◽  
pp. 1126 ◽  
Author(s):  
S. V. Rodríguez-Sanchez ◽  
L. M. Pla-Aragones ◽  
R. De Castro

Modern pig production in a vertically integrated company is a highly specialised and industrialised activity, requiring increasingly complex and critical decision-making. The present paper focuses on the decisions made on the pig-grower farms operating on an all-in–all-out management policy at the last stage of pig production. Based on a mixed-integer linear-programming model, an assessment for specific parameters to support marketing decisions on farms without individual weight control is made. The analysis of several key factors affecting the optimal marketing policy, such as transportation cost, when and how many pigs to deliver to the abattoir and weight homogeneity of the batch, served to gain insight into marketing decisions. The results confirmed that not just the feeding program, but also the grading price system, transportation and batch homogeneity have an enormous impact on the optimal marketing policy of fattening farms in a vertically integrated company. In addition, within the range of conditions considered, a time window of 4 weeks was deemed as optimal for delivering animals to the abattoir and the subsequent revenue was 15% higher than with traditional marketing rules.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhenfeng Jiang ◽  
Dongxu Chen ◽  
Zhongzhen Yang

A Synchronous Optimization for Multiship Shuttle Tanker Fleet Design and Scheduling is solved in the context of development of floating production storage and offloading device (FPSO). In this paper, the shuttle tanker fleet scheduling problem is considered as a vehicle routing problem with hard time window constraints. A mixed integer programming model aiming at minimizing total transportation cost is proposed to model this problem. To solve this model, we propose an exact algorithm based on the column generation and perform numerical experiments. The experiment results show that the proposed model and algorithm can effectively solve the problem.


Author(s):  
LianZheng Ge ◽  
Jian Chen ◽  
Ruifeng Li ◽  
Peidong Liang

Purpose The global performance of industrial robots partly depends on the properties of drive system consisting of motor inertia, gearbox inertia, etc. This paper aims to deal with the problem of optimization of global dynamic performance for robotic drive system selected from available components. Design/methodology/approach Considering the performance specifications of drive system, an optimization model whose objective function is composed of working efficiency and natural frequency of robots is proposed. Meanwhile, constraints including the rated and peak torque of motor, lifetime of gearbox and light-weight were taken into account. Furthermore, the mapping relationship between discrete optimal design variables and component properties of drive system were presented. The optimization problem with mixed integer variables was solved by a mixed integer-laplace crossover power mutation algorithm. Findings The optimization results show that our optimization model and methods are applicable, and the performances are also greatly promoted without sacrificing any constraints of drive system. Besides, the model fits the overall performance well with respect to light-weight ratio, safety, cost reduction and others. Practical implications The proposed drive system optimization method has been used for a 4-DOF palletizing robot, which has been largely manufactured in a factory. Originality/value This paper focuses on how the simulation-based optimization can be used for the purpose of generating trade-offs between cost, performance and lifetime when designing robotic drive system. An applicable optimization model and method are proposed to handle the dynamic performance optimization problem of a drive system for industrial robot.


Sign in / Sign up

Export Citation Format

Share Document