scholarly journals Study on Cyclic Cumulative Deformation Characteristics and the Equivalent Cyclic Creep Model of Soft Clay

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenbo Zhu ◽  
Guoliang Dai ◽  
Weiming Gong

Suction caisson foundations can be used to anchor tension leg platforms. The soil at the bottom of the caisson undergoes both unloading and cyclic loading under wind and wave loads. However, the problem of cyclic cumulative deformation of soft clay under unloading has rarely been addressed. So, the strain cumulative deformation and strain softening characteristics of soft clay are studied by cyclic triaxial tests. The test results show that under low static deviator stress ratios and dynamic deviator stress ratios, the soil has a low level of strain accumulation and softening. As the dynamic deviator stress ratios increase, the cumulative cyclic deformation gradually increases, which rapidly develops in the early stage and tends to stabilize in the later stage. Moreover, the softening index gradually increases and is linearly related to the logarithm of the number of cycles. The cyclic cumulative deformation of the soil increases with increases in unloading stress and dynamic deviator stress, showing a creep characteristic of attenuation and then stabilization. Based on the tests, an equivalent cyclic creep model is established to describe the strain accumulation and softening of soil and verified through comparison with the test results. Then, the model is extended to a three-dimension model, and a finite element subroutine is developed for studying the strain cumulative deformation and strain softening characteristics of soft clay.

2014 ◽  
Vol 513-517 ◽  
pp. 269-272
Author(s):  
Yeong Mog Park ◽  
Ik Joo Um ◽  
Norihiko Miura ◽  
Seung Cheol Baek

The purpose of this study is to investigate the undrain shear strength increment during consolidation process of soft clayey soils. Thirty kinds of laboratory triaxial tests have been performed using undisturbed and remolded Ariake clay samples with different degree of consolidation and 5 kinds of confining pressure. Test results show that well known linear equation proposed by Yamanouchi et al.(1982) is overestimated the strength of undisturbed soft clay ground in the process of consolidation. A new simple and reasonable exponential equation proposed in this paper.


1992 ◽  
Vol 29 (2) ◽  
pp. 326-333 ◽  
Author(s):  
K. D. Eigenbrod ◽  
J. Graham ◽  
J.-P. Burak

Seasonal changes in groundwater levels affect the rate of downhill creep movements in slopes. This process has been studied in triaxial tests on undisturbed specimens of a natural clay from Bluefish Lake, 50 km north of Yellowknife, N.W.T. Specimens were first anisotropically consolidated to low stresses that correspond to conditions at shallow depths in creeping slopes. Pore-water pressures (back pressures) in the specimens were then cycled systematically (over periods lasting 4–48 h) with the drainage leads open. Resulting axial and volumetric strains were measured, and shear and lateral strains deduced from them. Strain rates decreased with increasing total times of testing. They increased with increasing values of the ratio Δu/Δuf, with increasing values of deviator stress q, and with decreasing values of [Formula: see text]. Systematically increasing the pore-water pressures in the specimens produced clear estimates of failure at low stresses. Key words : slope, clay, creep, cyclic loading, ground water, triaxial.


Author(s):  
Jingjing Li ◽  
Lingwei Kong

The creep behaviors of expansive soils play an important role in landslide prediction and long-term stability analysis. In this paper, triaxial drained compression creep tests of expansive soils were conducted on the improved stress-controlled triaxial apparatus. The test results show that only transient deformation and attenuation creep occur with low deviator stress, and the increment of axial strain increases exponentially with deviator stress increasing; while deviator stress reaches a certain value, attenuation creep, steady creep and accelerated creep all occur in a creep curve. Meanwhile, the volumetric strain presents the shear shrinkage characteristic at the initial stage of loading, and the shear shrinkage is small. With the extension of loading time, the volumetric strain gradually varies from shear contraction to dilatancy. When entering the accelerated creep stage, the development rate of volumetric strain increases sharply. Besides, isochronous stress-strain curves of expansive soils indicate that their creep process possesses nonlinear characteristics, and the nonlinear degree is related to creep time and stress level. Imitating the empirical formula of cyclic cumulative deformation of clay, a new nonlinear creep model is presented, which may well describe the creep property of expansive soils. Furthermore, critical failure stress could be obtained based on the proposed creep model. The ratio of the critical failure stress to conventional shear failure stress ranges from 70% to 80%, with average of 75.56%, therefore, critical failure stress may be estimated by conventional triaxial tests with the margin of error 5.5% within.


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 403
Author(s):  
Sainulabdeen Mohamed Junaideen ◽  
Leslie George Tham ◽  
Chack Fan Lee

Static liquefaction of loose sands has been observed to initiate at stress ratios far less than the steady-state stress ratio. Different collapse surface concepts largely based on undrained triaxial test results have been proposed in the literature to explain the above instability phenomenon of loose sands. Studies of the instability behavior of fill material derived from residual soils remain limited. The present study investigated the instability behavior of a compacted residual soil using the conventional undrained triaxial tests and specially equipped constant shear triaxial tests. The test results were characterized in the p’: q: v space using the current state parameter with respect to the steady-state line for the residual soil. A modified collapse surface that has gradients varying with p’ and v was proposed for the loose residual soil to represent the instability states of undrained loading. Under constant shear stress conditions, the soil can mobilize stress ratios higher than those defined by the modified collapse surface. An instability surface was therefore presented for the instability states reached in static loading. Further, an alternative method of deducing the instability surface from the undrained stress paths was introduced.


1985 ◽  
Vol 22 (2) ◽  
pp. 172-176 ◽  
Author(s):  
Y. P. Vaid

The hyperbolic approximation of the stress–strain behaviour of soil based on the results of conventional triaxial tests, which is used in incremental elastic analysis of soil deformation problems, is shown to be inapplicable for representing soil behaviour under anisotropic consolidation and different stress paths. Test results on a normally consolidated clay are presented to show that a separate hyperbolic representation of stress–strain behaviour is possible for each consolidation history and stress path if increment in deviator stress after consolidation, rather than deviator stress, is used as the stress variable. Hyperbolic parameters are thus shown to depend on test type.


2019 ◽  
Vol 20 (K9) ◽  
pp. 31-37
Author(s):  
Kieu Le Thuy Chung ◽  
Phan Thi San Ha ◽  
Le Minh Son

Located in a flat plain with an extensive covering of very soft clay, Ho Chi Minh city is still in its urbanization and urban expansion with an inevitable development in construction at rapid pace. SHANSEP parameters for soft clay in HCM City will be helpful for geotechnical engineers in quantifying the behavior of soft clay and proposing suitable solutions for soft ground improvement. This paper presents the results of 100 CIUC triaxial tests on 20 clay samples belonging to two different groups of soft clay (taken in Binh Thanh and Nha Be districts) tested with 5 different modes of OCRs, i.e. 1, 1.5, 2, 4, and 6. The test results are analyzed to obtain SHANSEP models with really high coefficient of determination (R2 ≈ 1).


2004 ◽  
Vol 261-263 ◽  
pp. 723-728
Author(s):  
Li Jun Su ◽  
Hong Jian Liao ◽  
Jian Hua Yin

In this paper, a diatomaceous soft rock is studied. Triaxial tests had been conducted on this soft rock. From the test results, it is found that the stress-strain curve of this soft rock has a notable strain-softening tendency. In order to study its time-dependent stress-strain behavior, a constitutive model that can describe not only the strain-hardening behavior, but also the strain-softening behavior must be constructed. Based on Perzyna’s fundamental assumptions of the elastic visco-palstic theory, a visco-plastic flow rule, and Yin and Graham’s 3-D elastic visco-palstic constitutive model (3-D EVP model), the constitutive formulation under a triaxial stress state is obtained in this paper. The derived formulation can be used to simulate the time-dependent stress-strain behavior of both consolidated undrained and consolidated drained triaxial tests of soils and rocks. In this paper, the constitutive formulation is used to simulate the time-dependent stress-strain behavior of consolidated undrained triaxial tests of the soft rock studied in this paper. The simulated results are compared with the triaxial test results. The comparison of the results shows that model predictions agree well with measured results. This demonstrates that the EVP model can be used to describe the time-dependent stress-strain behavior of the soft rock studied in this paper.


Author(s):  
Xianwei Zhang ◽  
Xinyu Liu ◽  
Lingwei Kong ◽  
Gang Wang ◽  
Cheng Chen

Most previous studies have focused on the small strain stiffness of sedimentary soil while little attention has been given to residual soils with different properties. Most studies also neglected the effects of the deviator stress, which is extensively involved in civil engineering. This note considers the effects of the deviator stress on the small-strain stiffness of natural granite residual soil (GRS) as established from resonant column tests performed under various stress ratios. Although increasing the stress ratio results in a greater maximum shear modulus for both natural and remolded residual soils, remolded soil is more sensitive to changes in the stress ratio, which highlights the effects of soil cementation. The data herein offers new insights to understand the stiffness of residual soil and other weathered geomaterials.


1990 ◽  
Vol 27 (5) ◽  
pp. 531-545 ◽  
Author(s):  
D. T. Bergado ◽  
K. C. Chong ◽  
P. A. M. Daria ◽  
M. C. Alfaro

This study centred on the performance of the screw plate test (SPLT) to determine the deformability and consolidation characteristics of soft Bangkok clay. For comparison, a series of stress-path-controlled triaxial consolidation tests (tri) were carried out on good quality samples of Bangkok clay taken from the same testing sites and imposed with the same loading conditions as the screw plate tests. Undrained and drained moduli and coefficients of consolidation were obtained from the stress-path-controlled triaxial consolidation tests and were compared with the corresponding values of the screw plate test. In addition, the ultimate bearing capacity was derived from the pressure–deformation relationships of the screw plate test results. A graphical method was used to compute the coefficient of consolidation from the screw plate tests and from stress-path-controlled triaxial consolidation test results. The compressibility data were also obtained from conventional oedometer tests (oed). Both cv (SPLT)/cv (tri) and cv (SPLT)/cv(oed) ratios compared favorably with the cv (field)/cv (laboratory) ratio obtained from past investigations. The data from pressure–settlement–time relationships of the screw plate tests were used to successfully predict values that compared favorably with the measured values at each stress level. The pressure–deformation–time relationship from stress-path-controlled triaxial consolidation tests were also evaluated, and they indicated behaviour similar to that of the screw plate test results. Soil parameters obtained from screw plate tests were subsequently used to predict the settlement of two test embankments, giving fairly close agreement with the observed values. Key words: soft clay, settlement, deformation, consolidation, screw plate test, triaxial test, embankment, prediction, stress path.


Sign in / Sign up

Export Citation Format

Share Document