scholarly journals Unbiased Model-Agnostic Metalearning Algorithm for Learning Target-Driven Visual Navigation Policy

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tianfang Xue ◽  
Haibin Yu

As deep reinforcement learning methods have made great progress in the visual navigation field, metalearning-based algorithms are gaining more attention since they greatly improve the expansibility of moving agents. According to metatraining mechanism, typically an initial model is trained as a metalearner by existing navigation tasks and becomes well performed in new scenes through relatively few recursive trials. However, if a metalearner is overtrained on the former tasks, it may hardly achieve generalization on navigating in unfamiliar environments as the initial model turns out to be quite biased towards former ambient configuration. In order to train an impartial navigation model and enhance its generalization capability, we propose an Unbiased Model-Agnostic Metalearning (UMAML) algorithm towards target-driven visual navigation. Inspired by entropy-based methods, maximizing the uncertainty over output labels in classification tasks, we adopt inequality measures used in Economics as a concise metric to calculate the loss deviation across unfamiliar tasks. With succinctly minimizing the inequality of task losses, an unbiased navigation model without overperforming in particular scene types can be learnt based on Model-Agnostic Metalearning mechanism. The exploring agent complies with a more balanced update rule, able to gather navigation experience from training environments. Several experiments have been conducted, and results demonstrate that our approach outperforms other state-of-the-art metalearning navigation methods in generalization ability.

2019 ◽  
Vol 109 (3) ◽  
pp. 493-512 ◽  
Author(s):  
Nicolas Bougie ◽  
Ryutaro Ichise

Abstract Reinforcement learning methods rely on rewards provided by the environment that are extrinsic to the agent. However, many real-world scenarios involve sparse or delayed rewards. In such cases, the agent can develop its own intrinsic reward function called curiosity to enable the agent to explore its environment in the quest of new skills. We propose a novel end-to-end curiosity mechanism for deep reinforcement learning methods, that allows an agent to gradually acquire new skills. Our method scales to high-dimensional problems, avoids the need of directly predicting the future, and, can perform in sequential decision scenarios. We formulate the curiosity as the ability of the agent to predict its own knowledge about the task. We base the prediction on the idea of skill learning to incentivize the discovery of new skills, and guide exploration towards promising solutions. To further improve data efficiency and generalization of the agent, we propose to learn a latent representation of the skills. We present a variety of sparse reward tasks in MiniGrid, MuJoCo, and Atari games. We compare the performance of an augmented agent that uses our curiosity reward to state-of-the-art learners. Experimental evaluation exhibits higher performance compared to reinforcement learning models that only learn by maximizing extrinsic rewards.


Author(s):  
Yuechen Wu ◽  
Zhenhuan Rao ◽  
Wei Zhang ◽  
Shijian Lu ◽  
Weizhi Lu ◽  
...  

Learning to adapt to a series of different goals in visual navigation is challenging. In this work, we present a model-embedded actor-critic architecture for the multi-goal visual navigation task. To enhance the task cooperation in multi-goal learning, we introduce two new designs to the reinforcement learning scheme: inverse dynamics model (InvDM) and multi-goal co-learning (MgCl). Specifically, InvDM is proposed to capture the navigation-relevant association between state and goal, and provide additional training signals to relieve the sparse reward issue. MgCl aims at improving the sample efficiency and supports the agent to learn from unintentional positive experiences. Extensive results on the interactive platform AI2-THOR demonstrate that the proposed method converges faster than state-of-the-art methods while producing more direct routes to navigate to the goal. The video demonstration is available at: https://youtube.com/channel/UCtpTMOsctt3yPzXqe_JMD3w/videos.


Author(s):  
Zhenhuan Rao ◽  
Yuechen Wu ◽  
Zifei Yang ◽  
Wei Zhang ◽  
Shijian Lu ◽  
...  

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 226
Author(s):  
Wenzel Pilar von Pilchau ◽  
Anthony Stein ◽  
Jörg Hähner

State-of-the-art Deep Reinforcement Learning Algorithms such as DQN and DDPG use the concept of a replay buffer called Experience Replay. The default usage contains only the experiences that have been gathered over the runtime. We propose a method called Interpolated Experience Replay that uses stored (real) transitions to create synthetic ones to assist the learner. In this first approach to this field, we limit ourselves to discrete and non-deterministic environments and use a simple equally weighted average of the reward in combination with observed follow-up states. We could demonstrate a significantly improved overall mean average in comparison to a DQN network with vanilla Experience Replay on the discrete and non-deterministic FrozenLake8x8-v0 environment.


2021 ◽  
Author(s):  
Srivatsan Krishnan ◽  
Behzad Boroujerdian ◽  
William Fu ◽  
Aleksandra Faust ◽  
Vijay Janapa Reddi

AbstractWe introduce Air Learning, an open-source simulator, and a gym environment for deep reinforcement learning research on resource-constrained aerial robots. Equipped with domain randomization, Air Learning exposes a UAV agent to a diverse set of challenging scenarios. We seed the toolset with point-to-point obstacle avoidance tasks in three different environments and Deep Q Networks (DQN) and Proximal Policy Optimization (PPO) trainers. Air Learning assesses the policies’ performance under various quality-of-flight (QoF) metrics, such as the energy consumed, endurance, and the average trajectory length, on resource-constrained embedded platforms like a Raspberry Pi. We find that the trajectories on an embedded Ras-Pi are vastly different from those predicted on a high-end desktop system, resulting in up to $$40\%$$ 40 % longer trajectories in one of the environments. To understand the source of such discrepancies, we use Air Learning to artificially degrade high-end desktop performance to mimic what happens on a low-end embedded system. We then propose a mitigation technique that uses the hardware-in-the-loop to determine the latency distribution of running the policy on the target platform (onboard compute on aerial robot). A randomly sampled latency from the latency distribution is then added as an artificial delay within the training loop. Training the policy with artificial delays allows us to minimize the hardware gap (discrepancy in the flight time metric reduced from 37.73% to 0.5%). Thus, Air Learning with hardware-in-the-loop characterizes those differences and exposes how the onboard compute’s choice affects the aerial robot’s performance. We also conduct reliability studies to assess the effect of sensor failures on the learned policies. All put together, Air Learning enables a broad class of deep RL research on UAVs. The source code is available at: https://github.com/harvard-edge/AirLearning.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 999
Author(s):  
Ahmad Taher Azar ◽  
Anis Koubaa ◽  
Nada Ali Mohamed ◽  
Habiba A. Ibrahim ◽  
Zahra Fathy Ibrahim ◽  
...  

Unmanned Aerial Vehicles (UAVs) are increasingly being used in many challenging and diversified applications. These applications belong to the civilian and the military fields. To name a few; infrastructure inspection, traffic patrolling, remote sensing, mapping, surveillance, rescuing humans and animals, environment monitoring, and Intelligence, Surveillance, Target Acquisition, and Reconnaissance (ISTAR) operations. However, the use of UAVs in these applications needs a substantial level of autonomy. In other words, UAVs should have the ability to accomplish planned missions in unexpected situations without requiring human intervention. To ensure this level of autonomy, many artificial intelligence algorithms were designed. These algorithms targeted the guidance, navigation, and control (GNC) of UAVs. In this paper, we described the state of the art of one subset of these algorithms: the deep reinforcement learning (DRL) techniques. We made a detailed description of them, and we deduced the current limitations in this area. We noted that most of these DRL methods were designed to ensure stable and smooth UAV navigation by training computer-simulated environments. We realized that further research efforts are needed to address the challenges that restrain their deployment in real-life scenarios.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-22
Author(s):  
Jingao Xu ◽  
Erqun Dong ◽  
Qiang Ma ◽  
Chenshu Wu ◽  
Zheng Yang

Existing indoor navigation solutions usually require pre-deployed comprehensive location services with precise indoor maps and, more importantly, all rely on dedicatedly installed or existing infrastructure. In this article, we present Pair-Navi, an infrastructure-free indoor navigation system that circumvents all these requirements by reusing a previous traveler’s (i.e., leader) trace experience to navigate future users (i.e., followers) in a Peer-to-Peer mode. Our system leverages the advances of visual simultaneous localization and mapping ( SLAM ) on commercial smartphones. Visual SLAM systems, however, are vulnerable to environmental dynamics in the precision and robustness and involve intensive computation that prohibits real-time applications. To combat environmental changes, we propose to cull non-rigid contexts and keep only the static and rigid contents in use. To enable real-time navigation on mobiles, we decouple and reorganize the highly coupled SLAM modules for leaders and followers. We implement Pair-Navi on commodity smartphones and validate its performance in three diverse buildings and two standard datasets (TUM and KITTI). Our results show that Pair-Navi achieves an immediate navigation success rate of 98.6%, which maintains as 83.4% even after 2 weeks since the leaders’ traces were collected, outperforming the state-of-the-art solutions by >50%. Being truly infrastructure-free, Pair-Navi sheds lights on practical indoor navigations for mobile users.


2020 ◽  
Vol 538 ◽  
pp. 142-158 ◽  
Author(s):  
Xing Wu ◽  
Haolei Chen ◽  
Jianjia Wang ◽  
Luigi Troiano ◽  
Vincenzo Loia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document