scholarly journals Design of the Wireless Network Hierarchy System of Intelligent City Industrial Data Management Based on SDN Network Architecture

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wenken Tan ◽  
Jianmin Hu

With the rapid development of the industrial Internet of Things and the comprehensive popularization of mobile intelligent devices, the construction of smart city and economic development of wireless network demand are increasingly high. SDN has the advantages of control separation, programmable interface, and centralized control logic. Therefore, integrating this technical concept into the smart city data management WLAN network not only can effectively solve the problems existing in the previous wireless network operation but also provide more functions according to different user needs. In this case, the traditional WLAN network is of low cost and is simple to operate, but it cannot guarantee network compatibility and performance. From a practical perspective, further network compatibility and security are a key part of industrial IoT applications. This paper designs the network architecture of smart city industrial IoT based on SDN, summarizes the access control requirements and research status of industrial IoT, and puts forward the access control requirements and objectives of industrial IoT based on SDN. The characteristics of the industrial Internet of Things are regularly associated with data resources. In the framework of SDN industrial Internet of Things, gateway protocol is simplified and topology discovery algorithm is designed. The access control policy is configured on the gateway. The access control rule can be dynamically adjusted in real time. An SDN-based intelligent city industrial Internet of Things access control function test platform was built, and the system was simulated. The proposed method is compared with other methods in terms of extension protocol and channel allocation algorithm. Experimental results verify the feasibility of the proposed scheme. Finally, on the basis of performance analysis, the practical significance of the design of a smart city wireless network hierarchical data management system based on SDN industrial Internet of Things architecture is expounded.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3215 ◽  
Author(s):  
Malvin Nkomo ◽  
Gerhard P. Hancke ◽  
Adnan M. Abu-Mahfouz ◽  
Saurabh Sinha ◽  
Adeiza. J. Onumanyi

In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field.


2019 ◽  
Vol 9 (20) ◽  
pp. 4323 ◽  
Author(s):  
López de Lacalle ◽  
Posada

The new advances of IIOT (Industrial Internet of Things), together with the progress in visual computing technologies, are being addressed by the research community with interesting approaches and results in the Industry 4.0 domain[...]


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2449
Author(s):  
Jin Qi ◽  
Zian Wang ◽  
Bin Xu ◽  
Mengfei Wu ◽  
Zian Gao ◽  
...  

The adaptive coordination of trust services can provide highly dependable and personalized solutions for industrial requirements in the service-oriented industrial internet of things (IIoT) architecture to achieve efficient utilization of service resources. Although great progress has been made, trust service coordination still faces challenging problems such as trustless industry service, poor coordination, and quality of service (QoS) personalized demand. In this paper, we propose a QoS-driven and adaptive trust service coordination method to implement Pareto-efficient allocation of limited industrial service resources in the background of the IIoT. First, we established a Pareto-effective and adaptive industrial IoT trust service coordination model and introduced a blockchain-based adaptive trust evaluation mechanism to achieve trust evaluation of industrial services. Then, taking advantage of a large and complex search space for solution efficiency, we introduced and compared multi-objective gray-wolf algorithms with the particle swarm optimization (PSO) and dragonfly algorithms. The experimental results showed that by judging and blacklisting malicious raters quickly and accurately, our model can efficiently realize self-adaptive, personalized, and intelligent trust service coordination under the given constraints, improving not only the response time, but also the success rate in coordination.


2021 ◽  
Vol 11 (2) ◽  
pp. 88-101
Author(s):  
Ibrahim Cil ◽  
Fahri Arisoy ◽  
Hilal Kilinc

Industrial Internet of Things is becoming one of the fundamental technologies with the potential to be widely used in shipyards as in other industries to increase information visibility. This article aims to analyze how to develop an industrial IoT-enabled system that provides visibility and tracking of assets at SEDEF Shipyard, which is in the digital transformation process. The research made use of data from previous studies and by using content analysis, the findings were discussed. Industrial IoT enables the collection and analysis of data for more informed decisions.  Based on the findings, sensor data in the shipyard are transmitted to the cloud via connected networks. These data are analysed and combined with other information and presented to the stakeholders. Industrial IoT enables this data flow and monitors processes remotely and gives the ability to quickly change plans as needed. Keywords: Shipyard, Industrial Internet of Things, Cyber-Physical System, Visibility, Assets tracking;        


Sign in / Sign up

Export Citation Format

Share Document