scholarly journals An Efficient Semianalytical Modal Analysis of Rectangular Waveguides Containing Metamaterials with Graded Inhomogeneity

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qianru Weng ◽  
Qian Lin ◽  
Haifeng Wu

Rectangular waveguides containing inhomogeneous metamaterials with graded refractive-index profiles have potential applications in bending waveguides and radiation-enhanced antennas, and accurate eigenvalue solutions are prerequisite. Commonly used commercial electromagnetic solvers such as HFSS, COMSOL, and CST could not efficiently calculate the eigenvalues of waveguides containing graded refractive-index dielectrics. In this paper, an accurate and efficient semianalytical method based on the modal expansion has been proposed to solve these waveguides. The proposed method has been employed to calculate the eigenvalues, including the cutoff wavenumbers and dispersion relations, for metamaterials with various graded refractive-index profiles. Calculated results are then validated by comparison, using commercial solver HFSS, which indicates the superiority of the proposed method in accuracy and efficiency. Below-cutoff backward wave propagation is observed in waveguides filled with graded refractive-index metamaterials, which provides a new approach for waveguide miniaturization.

Author(s):  
Reza Alebrahim ◽  
Pawel Packo ◽  
Mirco Zaccariotto ◽  
Ugo Galvanetto

In this study, methods to mitigate anomalous wave propagation in 2-D Bond-Based Peridynamics (PD) are presented. Similarly to what happens in classical non-local models, an irregular wave transmission phenomenon occurs at high frequencies. This feature of the dynamic performance of PD, limits its potential applications. A minimization method based on the weighted residual point collocation is introduced to substantially extend the frequency range of wave motion modeling. The optimization problem, developed through inverse analysis, is set up by comparing exact and numerical dispersion curves and minimizing the error in the frequency-wavenumber domain. A significant improvement in the wave propagation simulation using Bond-Based PD is observed.


2000 ◽  
Vol 62 (4) ◽  
pp. 5711-5720 ◽  
Author(s):  
A. A. Asatryan ◽  
P. A. Robinson ◽  
L. C. Botten ◽  
R. C. McPhedran ◽  
N. A. Nicorovici ◽  
...  

Author(s):  
Jesús Morales-Valdez ◽  
Luis Alvarez-Icaza

A novel technique to estimate stiffness in buildings is presented. In contrast with most of the available work in the literature that resorts to diverse forms of modal analysis, this local technique is based on the propagation of a Ricker pulse through the structure and on measuring the wave arrival times at each story of the building, represented as a single layer in a multiple stratum model. These arrival times are later used to recuperate building stiffness at each story. Wave propagation is based on the Thomson-Haskell method, that allows to generalize the wave propagation method to multi-story buildings without significant changes to the original formulation. The number of calculated parameters is small in comparison with methods based on modal analysis. This technique provides and quick and easy methodology to assess building integrity and is an interesting alternative to verify results obtained by other identification methods. Simulation results for building with heterogeneous characteristics across the stories confirm the feasibility of the proposal.


Optik ◽  
2019 ◽  
Vol 181 ◽  
pp. 231-238
Author(s):  
Jianyu Zhou ◽  
Tian Sang ◽  
Junlang Li ◽  
La Wang ◽  
Rui Wang ◽  
...  

Author(s):  
Raj Kumar Pal ◽  
Robert F. Waymel ◽  
Philippe H. Geubelle ◽  
John Lambros

We develop a framework for wave tailoring by altering the lattice network topology of a granular crystal consisting of spherical granules in contact. The lattice topology can alternate between two stable configurations, with the spherical granules of the lattice held in stable equilibrium in each configuration by gravity. Under impact, the first configuration results in a wave with rapidly decaying amplitude as it propagates along a primary chain, while the second configuration results in a solitary wave propagating along the primary chain with no decay. The mechanism to achieve such tunability is by having energy diverted to the granules adjacent to the primary chain in the first case but not the second. The tunable design of the proposed network is validated using both numerical simulations and experiments. In terms of potential applications, the proposed bistable lattice network can be viewed either as a wave attenuator or as a device that allows higher amplitude wave propagation in one direction than in the opposite direction. The lattice is analogous to a crystal phase transformation due to the change in atomic configurations, leading to the change in properties at the macroscale.


1978 ◽  
Vol 10 (4) ◽  
pp. 301-309 ◽  
Author(s):  
W. A. Gambling ◽  
H. Matsumura ◽  
Catherine M. Ragdale

2017 ◽  
Vol 21 (3) ◽  
pp. 1119-1132 ◽  
Author(s):  
Gui-Lan Yu ◽  
Hong-Wei Miao

The vibration isolation performance of a PC sandwich plate with periodic hollow tube core is investigated experimentally and numerically. The experiment results reveal that there exist vibration attenuation zones in acceleration frequency responses which can be improved by increasing the number of periods or tuning some structure parameters. The presence of soft fillers shifts the attenuation zone to lower frequencies and enhances the capability of vibration isolation to some extent. Dispersion relations and acceleration frequency responses are calculated by finite element method using COMSOL MULTIPHYSICS. The attenuation zones obtained by experiments fit well with that by simulations, and both are consistent with the band gap in dispersion relations. The numerical and experimental studies in the present paper show that this PC sandwich plate exhibits a good performance on vibration isolation in low frequency ranges, which will provide some useful references for relevant research and potential applications in vibration propagation manipulations.


Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. SM77-SM93 ◽  
Author(s):  
Tim T. Lin ◽  
Felix J. Herrmann

An explicit algorithm for the extrapolation of one-way wavefields is proposed that combines recent developments in information theory and theoretical signal processing with the physics of wave propagation. Because of excessive memory requirements, explicit formulations for wave propagation have proven to be a challenge in 3D. By using ideas from compressed sensing, we are able to formulate the (inverse) wavefield extrapolation problem on small subsets of the data volume, thereby reducing the size of the operators. Compressed sensing entails a new paradigm for signal recovery that provides conditions under which signals can be recovered from incomplete samplings by nonlinear recovery methods that promote sparsity of the to-be-recovered signal. According to this theory, signals can be successfully recovered when the measurement basis is incoherent with the representa-tion in which the wavefield is sparse. In this new approach, the eigenfunctions of the Helmholtz operator are recognized as a basis that is incoherent with curvelets that are known to compress seismic wavefields. By casting the wavefield extrapolation problem in this framework, wavefields can be successfully extrapolated in the modal domain, despite evanescent wave modes. The degree to which the wavefield can be recovered depends on the number of missing (evanescent) wavemodes and on the complexity of the wavefield. A proof of principle for the compressed sensing method is given for inverse wavefield extrapolation in 2D, together with a pathway to 3D during which the multiscale and multiangular properties of curvelets, in relation to the Helmholz operator, are exploited. The results show that our method is stable, has reduced dip limitations, and handles evanescent waves in inverse extrapolation.


2020 ◽  
Author(s):  
Quanfu He ◽  
Zheng Fang ◽  
Ofir Shoshamin ◽  
Steven S. Brown ◽  
Yinon Rudich

Abstract. Accurate Rayleigh scattering and absorption cross-sections of atmospheric gases are essential for understanding the propagation of electromagnetic radiation in planetary atmospheres. Accurate extinction cross-sections are also essential for calibrating high finesse optical cavities and differential optical absorption spectroscopy and for accurate remote sensing. In this study, we measured the scattering and absorption cross-sections of carbon dioxide, nitrous oxide, sulfur hexafluoride, oxygen, and methane in the continuous wavelength range of 307–725 nm using Broadband Cavity Enhanced Spectroscopy (BBCES). The experimentally derived Rayleigh scattering cross-sections for CO2, N2O, SF6, O2, and CH4 agree with refractive index-based calculations, with a difference of 1.5 % and 1.1 %, 1.5 %, 2.9 %, and 1.4 % on average, respectively. The O2-O2 collision-induced absorption and absorption by methane are obtained with high precision at the 0.8 nm resolution of our BBCES instrument in the 307–725 nm wavelength range. New dispersion relations for N2O, SF6, and CH4 were derived using data in the UV-vis wavelength range. This study provides improved refractive index dispersion relations, n-based Rayleigh scattering cross-sections, and absorption cross-sections for these gases.


Sign in / Sign up

Export Citation Format

Share Document