scholarly journals Adv-Plate Attack: Adversarially Perturbed Plate for License Plate Recognition System

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hyun Kwon ◽  
Jang-Woon Baek

Deep learning technology has been used to develop improved license plate recognition (LPR) systems. In particular, deep neural networks have brought significant improvements in the LPR system. However, deep neural networks are vulnerable to adversarial examples. In the existing LPR system, adversarial examples study specific spots that are easily identifiable by humans or require human feedback. In this paper, we propose a method of generating adversarial examples in the license plate, which has no human feedback and is difficult to identify by humans. In the proposed method, adversarial noise is added only to the license plate among the entire image to create an adversarial example that is erroneously recognized by the LPR system without being identified by humans. Experiments were performed using the baza silka dataset, and TensorFlow was used as the machine learning library. When epsilon is 0.6 for the first type, and alpha and the iteration of the second type are 0.4 and 1000, respectively, the adversarial examples generated by the first and second type generation methods are reduced to 20% and 15% accuracy in the LPR system.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1579
Author(s):  
Dongqi Wang ◽  
Qinghua Meng ◽  
Dongming Chen ◽  
Hupo Zhang ◽  
Lisheng Xu

Automatic detection of arrhythmia is of great significance for early prevention and diagnosis of cardiovascular disease. Traditional feature engineering methods based on expert knowledge lack multidimensional and multi-view information abstraction and data representation ability, so the traditional research on pattern recognition of arrhythmia detection cannot achieve satisfactory results. Recently, with the increase of deep learning technology, automatic feature extraction of ECG data based on deep neural networks has been widely discussed. In order to utilize the complementary strength between different schemes, in this paper, we propose an arrhythmia detection method based on the multi-resolution representation (MRR) of ECG signals. This method utilizes four different up to date deep neural networks as four channel models for ECG vector representations learning. The deep learning based representations, together with hand-crafted features of ECG, forms the MRR, which is the input of the downstream classification strategy. The experimental results of big ECG dataset multi-label classification confirm that the F1 score of the proposed method is 0.9238, which is 1.31%, 0.62%, 1.18% and 0.6% higher than that of each channel model. From the perspective of architecture, this proposed method is highly scalable and can be employed as an example for arrhythmia recognition.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shize Huang ◽  
Xiaowen Liu ◽  
Xiaolu Yang ◽  
Zhaoxin Zhang ◽  
Lingyu Yang

Trams have increasingly deployed object detectors to perceive running conditions, and deep learning networks have been widely adopted by those detectors. Growing neural networks have incurred severe attacks such as adversarial example attacks, imposing threats to tram safety. Only if adversarial attacks are studied thoroughly, researchers can come up with better defence methods against them. However, most existing methods of generating adversarial examples have been devoted to classification, and none of them target tram environment perception systems. In this paper, we propose an improved projected gradient descent (PGD) algorithm and an improved Carlini and Wagner (C&W) algorithm to generate adversarial examples against Faster R-CNN object detectors. Experiments verify that both algorithms can successfully conduct nontargeted and targeted white-box digital attacks when trams are running. We also compare the performance of the two methods, including attack effects, similarity to clean images, and the generating time. The results show that both algorithms can generate adversarial examples within 220 seconds, a much shorter time, without decrease of the success rate.


2017 ◽  
Author(s):  
Najib J. Majaj ◽  
Denis G. Pelli

ABSTRACTToday many vision-science presentations employ machine learning, especially the version called “deep learning”. Many neuroscientists use machine learning to decode neural responses. Many perception scientists try to understand how living organisms recognize objects. To them, deep neural networks offer benchmark accuracies for recognition of learned stimuli. Originally machine learning was inspired by the brain. Today, machine learning is used as a statistical tool to decode brain activity. Tomorrow, deep neural networks might become our best model of brain function. This brief overview of the use of machine learning in biological vision touches on its strengths, weaknesses, milestones, controversies, and current directions. Here, we hope to help vision scientists assess what role machine learning should play in their research.


2017 ◽  
Vol 1 (3) ◽  
pp. 83 ◽  
Author(s):  
Chandrasegar Thirumalai ◽  
Ravisankar Koppuravuri

In this paper, we will use deep neural networks for predicting the bike sharing usage based on previous years usage data. We will use because deep neural nets for getting higher accuracy. Deep neural nets are quite different from other machine learning techniques; here we can add many numbers of hidden layers to improve the accuracy of our prediction and the model can be trained in the way we want such that we can achieve the results we want. Nowadays many AI experts will say that deep learning is the best AI technique available now and we can achieve some unbelievable results using this technique. Now we will use that technique to predict bike sharing usage of a rental company to make sure they can take good business decisions based on previous years data.


Sign in / Sign up

Export Citation Format

Share Document