scholarly journals Ant Colony Optimization Using Common Social Information and Self-Memory

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yoshiki Tamura ◽  
Tomoko Sakiyama ◽  
Ikuo Arizono

Ant colony optimization (ACO), which is one of the metaheuristics imitating real ant foraging behavior, is an effective method to find a solution for the traveling salesman problem (TSP). The rank-based ant system (ASrank) has been proposed as a developed version of the fundamental model AS of ACO. In the ASrank, since only ant agents that have found one of some excellent solutions are let to regulate the pheromone, the pheromone concentrates on a specific route. As a result, although the ASrank can find a relatively good solution in a short time, it has the disadvantage of being prone falling into a local solution because the pheromone concentrates on a specific route. This problem seems to come from the loss of diversity in route selection according to the rapid accumulation of pheromones to the specific routes. Some ACO models, not just the ASrank, also suffer from this problem of loss of diversity in route selection. It can be considered that the diversity of solutions as well as the selection of solutions is an important factor in the solution system by swarm intelligence such as ACO. In this paper, to solve this problem, we introduce the ant system using individual memories (ASIM) aiming to improve the ability to solve TSP while maintaining the diversity of the behavior of each ant. We apply the existing ACO algorithms and ASIM to some TSP benchmarks and compare the ability to solve TSP.

2013 ◽  
Vol 5 (2) ◽  
pp. 48-53
Author(s):  
William Aprilius ◽  
Lorentzo Augustino ◽  
Ong Yeremia M. H.

University Course Timetabling Problem is a problem faced by every university, one of which is Universitas Multimedia Nusantara. Timetabling process is done by allocating time and space so that the whole associated class and course can be implemented. In this paper, the problem will be solved by using MAX-MIN Ant System Algorithm. This algorithm is an alternative approach to ant colony optimization. This algorithm uses two tables of pheromones as stigmergy, i.e. timeslot pheromone table and room pheromone table. In addition, the selection of timeslot and room is done by using the standard deviation of the value of pheromones. Testing is carried out by using 105 events, 45 timeslots, and 3 types of categories based on the number of rooms provided, i.e. large, medium, and small. In each category, testing is performed 5 times and for each testing, the data recorded is the unplace and Soft Constraint Penalty. In general, the greater the number of rooms, the smaller the unplace. Index Terms—ant colony optimization, max-min ant system, timetabling


Author(s):  
Hoang Xuan Huan ◽  
Nguyen Linh-Trung ◽  
Do Duc Dong ◽  
Huu-Tue Huynh

Ant colony optimization (ACO) techniques are known to be efficient for combinatorial optimization. The traveling salesman problem (TSP) is the benchmark used for testing new combinatoric optimization algorithms. This paper revisits the application of ACO techniques to the TSP and discuss some general aspects of ACO that have been previously overlooked. In fact, it is observed that the solution length does not reflect exactly the quality of a particular edge belong to the solution, but it is only used for relatively evaluating whether the edge is good or bad in the process of reinforcement learning. Based on this observation, we propose two algorithms– Smoothed Max-Min Ant System and Three-Level Ant System– which not only can be easily implemented but also provide better performance, as compared to the well-known Max-Min Ant System. The performance is evaluated by numerical simulation using benchmark datasets.


2010 ◽  
Vol 439-440 ◽  
pp. 558-562
Author(s):  
Jin Qiu Yang ◽  
Jian Gang Yang ◽  
Gen Lang Chen

Ant System (AS) was the first Ant Colony Optimization (ACO) algorithm, which converged too slowly and consumed huge computation. Among the variants of AS, Ant Colony System (ACS) was one of the most successful algorithms. But ACS converged so rapidly that it always was in early stagnation. An improved Ant Colony System based on Negative Biased (NBACS) was introduced in the paper to overcome the early stagnation of the ACS. Experiments for Traveling Salesman Problem (TSP) showed that better solutions were obtained at the same time when the convergence rate accelerated more rapidly.


2013 ◽  
Vol 389 ◽  
pp. 849-853
Author(s):  
Fang Song Cui ◽  
Wei Feng ◽  
Da Zhi Pan ◽  
Guo Zhong Cheng ◽  
Shuang Yang

In order to overcome the shortcomings of precocity and stagnation in ant colony optimization algorithm, an improved algorithm is presented. Considering the impact that the distance between cities on volatility coefficient, this study presents an model of adjusting volatility coefficient called Volatility Model based on ant colony optimization (ACO) and Max-Min ant system. There are simulation experiments about TSP cases in TSPLIB, the results show that the improved algorithm effectively overcomes the shortcoming of easily getting an local optimal solution, and the average solutions are superior to ACO and Max-Min ant system.


2013 ◽  
Vol 43 (2) ◽  
pp. 790-802 ◽  
Author(s):  
Meie Shen ◽  
Wei-Neng Chen ◽  
Jun Zhang ◽  
Henry Shu-Hung Chung ◽  
O. Kaynak

Sign in / Sign up

Export Citation Format

Share Document