scholarly journals Quantitative Study of Residual Oil Distribution during Water Flooding through Digital Core Analysis

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xuechao Liu ◽  
Dazhong Ren ◽  
Fengjuan Dong ◽  
Junxiang Nan ◽  
Ran Zhou

The character of residual oil formed during water flooding, one important technique to enhance oil recovery, is helpful to further study permeability and recovery in tight sandstone oil reservoirs. In this paper, we take a tight sandstone reservoir in Ordos Basin as the research object and use in situ displacement X-CT scanning technology to analyze the dynamic characteristics of oil during water flooding. Firstly, core pore radius and oil storage space radius were measured from digital cores which are acquired in different water flooding stages by X-CT scanning technology. Secondly, analytical and evaluation methods were established to describe fluid distribution in the pore space of the core in different water flooding stages based on curve similarity. Finally, by numerical results, we analyzed the oil distribution features in the process of water flooding for core samples. In this paper, the oil distribution characteristics during water flooding are revealed based on digital core analysis. Also, a quantitative evaluation method is given to provide theoretical guidance.

Author(s):  
Wan Muhammad Luqman Sazali ◽  
Sahriza Salwani Md Shah ◽  
M Zuhaili Kashim ◽  
Budi Priyatna Kantaatmadja ◽  
Lydia Knuefing ◽  
...  

2014 ◽  
Vol 1010-1012 ◽  
pp. 1735-1739
Author(s):  
Feng Run Zhang ◽  
Ai Hua Guo ◽  
Huai En Cai

Because of the high heterogeneity, late water flooding and irregular well network, the distribution law of residual oil reserve in Chang 6 reservoir becomes much complicated. Combining the geology with dynamics of the reservoir, volumetric and formation coefficient methods are adapted to calculated the residual reserves, and then the distribution laws and controlling factors are analyzed. The results indicate that: there are still large amounts of residual reserve in main layer Chang 622; the residual reserve can be classified into three kinds, Class I and class II are distributed concentrative in main layer; the controlling factors include property, sedimentary facies, heterogeneity, well network controlling and geological structure and so on. Finally, according to the distribution laws and controlling factors, targeted measures are proposed. The studying results provide well foundations for improving recovery of residual oil reserves and the total recovery of the reservoir.


2012 ◽  
Vol 616-618 ◽  
pp. 126-132 ◽  
Author(s):  
Hua Bin Wei ◽  
Shang Ming Shi ◽  
Pan Zhao ◽  
Dong Kai Huo ◽  
Wan Zhen Zhu

The high water cut stage on the residual oil distribution regularity in late development stage of oilfield is difficult in Daqing oilfield, North West Water Flooding fine demonstration zone development time is long, well under the complicated characteristic, adopts phase control of three-dimensional geological modeling and the method of reservoir numerical simulation in the demonstration zone, structural features and sedimentary characteristics of based on the establishment of demonstration zone, three-dimensional geological model. Through the application of fine reservoir numerical simulation method for the numerical simulation of remaining oil, and a summary of the demonstration zone of residual oil distribution law and cause of formation, provides reliable basis for the next step of oilfield development adjustment.


Author(s):  
Shuxun Zhou ◽  
Yan Zhou ◽  
Jian Shi ◽  
Yujie Zhu ◽  
Wulin Xiao ◽  
...  

AbstractIn order to explore the influence of the micropore structure of the tight sandstone reservoir in the water driving characteristics, the studies on the Chang 6 tight sandstone reservoir of the middle-western part of Ordos Basin are carried out by various experiments such as cast-thin section analysis, scanning electron microscopy, high-pressure mercury injection and micro-water driving. The result shows that the permeability contribution curves of samples shift to the left as the sample permeability decreases, indicating that the greater the permeability, the greater the proportion of large pores. The permeability is mostly dominated by pores with the radius larger than R50–R60. There are big differences in the water driving type, oil-driven efficiency and residual oil distribution characteristics between reservoirs of different types. The type II reservoir is the major target of subsequent exploration and development, where water driving types consist of mesh and finger, leaving the residual oil mainly locked by water or isolated as oil drops. The size and distribution feature of pores are the key factors dominating the oil-driven efficiency.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 544-550 ◽  
Author(s):  
Pufu Xiao ◽  
Xiaoyong Leng ◽  
Hanmin Xiao ◽  
Linghui Sun ◽  
Haiqin Zhang ◽  
...  

AbstractIn order to explore the effect of wettability and pore throat heterogeneity on oil recovery efficiency in porous media, physical simulation experiment and nuclear magnetic resonance (NMR) measurements were conducted to investigate how crude oil residing in different sized pores are recovered by water flooding. Experimental results indicate that the recovery factor of water flooding is governed by spontaneous imbibition and also pore throat heterogeneity. It is found that intermediate wetting cores lead to the highest final recovery factor in comparison with water wet cores and weak oil wet cores, and the recovery oil difference in clay micro pore is mainly because of the wettability, the difference in medium pore and large pore is affected by pore throat heterogeneity. Water wet core has a lower recovery factor in medium and large pore due to its poor heterogeneity, in spite of the spontaneous imbibition effect is very satisfying. Intermediate wetting cores has significant result in different sized pore and throat, the difference in medium pore and large pore is affected by pore throat heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document