Porosity Determination via Contrast Enhanced Micro CT Scanning and Digital Core Analysis: A Case Study of X Field

Author(s):  
Wan Muhammad Luqman Sazali ◽  
Sahriza Salwani Md Shah ◽  
M Zuhaili Kashim ◽  
Budi Priyatna Kantaatmadja ◽  
Lydia Knuefing ◽  
...  
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xuechao Liu ◽  
Dazhong Ren ◽  
Fengjuan Dong ◽  
Junxiang Nan ◽  
Ran Zhou

The character of residual oil formed during water flooding, one important technique to enhance oil recovery, is helpful to further study permeability and recovery in tight sandstone oil reservoirs. In this paper, we take a tight sandstone reservoir in Ordos Basin as the research object and use in situ displacement X-CT scanning technology to analyze the dynamic characteristics of oil during water flooding. Firstly, core pore radius and oil storage space radius were measured from digital cores which are acquired in different water flooding stages by X-CT scanning technology. Secondly, analytical and evaluation methods were established to describe fluid distribution in the pore space of the core in different water flooding stages based on curve similarity. Finally, by numerical results, we analyzed the oil distribution features in the process of water flooding for core samples. In this paper, the oil distribution characteristics during water flooding are revealed based on digital core analysis. Also, a quantitative evaluation method is given to provide theoretical guidance.


ZooKeys ◽  
2021 ◽  
Vol 1054 ◽  
pp. 173-184
Author(s):  
Yves Samyn ◽  
Gontran Sonet ◽  
Cedric d'Udekem d'Acoz

Sea cucumber taxonomy and systematics has in the past heavily relied on gross external and internal anatomy, ossicle assemblage in different tissues, and molecular characterisation, with coloration, habitat, and geographical and bathymethric distribution also considered important parameters. In the present paper, we made these observations and techniques in detail and complemented them with the novel technique of micro-computed tomography of the calcareous ring. We investigated a single European species, the so-called gravel sea cucumber, Neopentadactyla mixta (Östergren, 1898), using recently collected material from the Chausey Islands, Normandy, France. We redescribed the species, illustrated its ossicle assemblage through scanning electron microscopy, and visualised the calcareous ring through stacking photography and through micro-CT scanning. Additionally, a DNA fragment of 955 base pairs of the 18S ribosomal RNA gene was sequenced from one specimen, which showed a high similarity with the only sequence of N. mixta publicly available. We completed this integrative study by providing a detailed distribution of the occurrence of N. mixta based on published, verifiable accounts.


Author(s):  
S.V. Stepanov ◽  
◽  
D.P. Patrakov ◽  
V.V. Vasilev ◽  
A.B. Shabarov ◽  
...  

2013 ◽  
Vol 82 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Ana Ivanović ◽  
Gregor Aljančič ◽  
Jan W. Arntzen

We performed an exploratory analysis of the morphology of the cranium in the white olm (Proteus anguinus anguinus) and the black olm (P. a. parkelj) with micro-CT scanning and geometric morphometrics. The mudpuppy (Necturus maculosus) was used as an outgroup. The black olm falls outside the white olm morphospace by a markedly wider skull, shorter vomers which are positioned further apart and by laterally positioned squamosals and quadrates relative to the palate (the shape of the buccal cavity). On account of its robust skull with more developed premaxillae a shorter otico-occipital region, the black olm is positioned closer to Necturus than are the studied specimens of the white olm. The elongated skull of the white olm, with an anteriorly positioned jaw articulation point, could be regarded as an adaptation for improved feeding success, possibly compensating for lack of vision. As yet, the alternative explanations on the evolution of troglomorphism in Proteus are an extensive convergence in white olms versus the reverse evolution towards less troglomorphic character states in the black olm. To further understand the evolutionary trajectories within Proteus we highlight the following hypotheses for future testing: i) morphological differentiation is smaller within than between genetically differentiated white olm lineages, and ii) ontogenetic shape changes are congruent with the shape changes between lineages. We anticipate that the morphological detail and analytical power that come with the techniques we here employed will assist us in this task.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Bruno Paun ◽  
Daniel García Leon ◽  
Alex Claveria Cabello ◽  
Roso Mares Pages ◽  
Elena de la Calle Vargas ◽  
...  

Abstract Background Skeletal muscle injury characterisation during healing supports trauma prognosis. Given the potential interest of computed tomography (CT) in muscle diseases and lack of in vivo CT methodology to image skeletal muscle wound healing, we tracked skeletal muscle injury recovery using in vivo micro-CT in a rat model to obtain a predictive model. Methods Skeletal muscle injury was performed in 23 rats. Twenty animals were sorted into five groups to image lesion recovery at 2, 4, 7, 10, or 14 days after injury using contrast-enhanced micro-CT. Injury volumes were quantified using a semiautomatic image processing, and these values were used to build a prediction model. The remaining 3 rats were imaged at all monitoring time points as validation. Predictions were compared with Bland-Altman analysis. Results Optimal contrast agent dose was found to be 20 mL/kg injected at 400 μL/min. Injury volumes showed a decreasing tendency from day 0 (32.3 ± 12.0mm3, mean ± standard deviation) to day 2, 4, 7, 10, and 14 after injury (19.6 ± 12.6, 11.0 ± 6.7, 8.2 ± 7.7, 5.7 ± 3.9, and 4.5 ± 4.8 mm3, respectively). Groups with single monitoring time point did not yield significant differences with the validation group lesions. Further exponential model training with single follow-up data (R2 = 0.968) to predict injury recovery in the validation cohort gave a predictions root mean squared error of 6.8 ± 5.4 mm3. Further prediction analysis yielded a bias of 2.327. Conclusion Contrast-enhanced CT allowed in vivo tracking of skeletal muscle injury recovery in rat.


2021 ◽  
Vol 11 (11) ◽  
pp. 5086
Author(s):  
Mazen F. Alkahtany ◽  
Saqib Ali ◽  
Abdul Khabeer ◽  
Shafqat A. Shah ◽  
Khalid H. Almadi ◽  
...  

This study aimed to investigate variations in the root canal morphology of maxillary second premolar (MSP) teeth using microcomputed tomography (micro-CT). Sixty (N = 60) human extracted MSPs were collected and prepared for micro-CT scanning. The duration for scanning a single sample ranged between 30 and 40 min and a three-dimensional (3-D) image was obtained for all the MSPs. The images were evaluated by a single observer who recorded the canal morphology type, number of roots, canal orifices, apical foramina(s), apical delta(s), and accessory canals. The root canal configuration was categorized in agreement with Vertucci’s classification, and any configuration not in agreement with Vertucci’s classification was reported as an “additional canal configuration”. Descriptive statistics (such as mean percentages) were calculated using SPSS software. The most common types agreeing with Vertucci’s classification (in order of highest to lowest incidence) were types I, III, V, VII, II, and VI. The teeth also exhibited four additional configurations that were different from Vertucci’s classification: types 2-3, 1-2-3, 2-1-2-1, and 1-2-1-3. A single root was found in 96.7% and the majority of the samples demonstrated two canals (73.3%). Further, 80% of the teeth showed one canal orifice. The number of apical foramina’s in the teeth was variable, with 56.7% having solitary apical foramen. The accessory canal was found in 33.3%, and apical delta was found in only 20% of the samples. Variable morphology of the MSPs was detected in our study. The canal configuration most prevalent was type 1; however, the results also revealed some additional canal types.


Sign in / Sign up

Export Citation Format

Share Document