scholarly journals Transcriptome Profiling of Human Follicle Dermal Papilla Cells in response to Porphyra-334 Treatment by RNA-Seq

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Su Yeon Kim ◽  
Won Kyong Cho ◽  
Hye-In Kim ◽  
Seung Hye Paek ◽  
Sung Joo Jang ◽  
...  

Porphyra-334 is a kind of mycosporine-like amino acid absorbing ultraviolet-A. Here, we characterized porphyra-334 as a potential antiaging agent. An in vitro assay revealed that porphyra-334 dramatically promoted collagen synthesis in fibroblast cells. The effect of porphyra-334 on cell proliferation was dependent on the cell type, and the increase of cell viability by porphyra-334 was the highest in keratinocyte cells among the three tested cell types. An in vivo clinical test with 22 participants demonstrated the possible role of porphyra-334 in the improvement of periorbital wrinkles. RNA-sequencing using human follicle dermal papilla (HFDP) cells upon porphyra-334 treatment identified the upregulation of metallothionein- (MT-) associated genes, confirming the antioxidant role of porphyra-334 with MT. Moreover, the expression of genes involved in nuclear chromosome segregation and the encoding of components of kinetochores was upregulated by porphyra-334 treatment. Furthermore, we found that several genes associated with the hair follicle cycle, the hair follicle structure, the epidermal structure, and stem cells were upregulated by porphyra-334 treatment, suggesting the potential role of porphyra-334 in hair follicle growth and maintenance. In summary, we provided several new pieces of evidence of porphyra-334 as a potential antiaging cosmetic agent and elucidated the expression network in HFDP cells upon porphyra-334.

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 230 ◽  
Author(s):  
Won Kyong Cho ◽  
Hye-In Kim ◽  
Soo-Yun Kim ◽  
Hyo Hyun Seo ◽  
Jihyeok Song ◽  
...  

Edelweiss (Leontopodium Alpinum) in the family Asteraceae is a wildflower that grows in rocky limestone places. Here, we investigated the efficacy of edelweiss callus culture extract (Leontopodium Alpinum callus culture extract; LACCE) using multiple assays from in vitro to in vivo as well as transcriptome profiling. Several in vitro assay results showed the strong antioxidant activity of LACCE in response to UVB treatment. Moreover, LACCE suppressed inflammation and wrinkling; however, moisturizing activity was increased by LACCE. The clinical test in vivo demonstrated that constant application of LACCE on the face and skin tissues improved anti-periorbital wrinkles, skin elasticity, dermal density, and skin thickness compared with the placebo. The RNA-Sequencing results showed at least 16.56% of human genes were expressed in keratinocyte cells. LACCE up-regulated genes encoding several KRT proteins; DDIT4, BNIP3, and IGFBP3 were involved in the positive regulation of the developmental process, programmed cell death, keratinization, and cornification forming skin barriers, which provide many advantages in the human skin. By contrast, down-regulated genes were stress-responsive genes, including metal, oxidation, wounding, hypoxia, and virus infection, suggesting LACCE did not cause any harmful stress on the skin. Our comprehensive study demonstrated LACCE is a promising agent for anti-aging cosmetics.


2021 ◽  
Author(s):  
Meriem Bejaoui ◽  
Aprill Kee Oliva ◽  
May Sin Ke ◽  
Farhana Ferdousi ◽  
Hiroko Isoda

Abstract IntroductionDermal papilla cells (DPc) is an important element in studying the hair follicle (HF) niche. The human hair follicle dermal papilla cells (HFDPC) are widely used as an in vitro model to study hair growth related research. These cells are usually grown in 2D culture, nevertheless, this system did not show efficient therapeutic effect on HF regeneration and growth, and key differences were observed between cell activity in vitro and in vivo. ObjectiveRecent studies have showed that HFDPC grown in 3D hanging spheroids is more morphologically akin to intact DPc microenvironment. This current study showed that the 3D model is applicable to the commercial cell line with new insights on its variability by comparing to previous studies of gene signature restored by 3D culture.Methods and Results Our data demonstrated that HFDPCS grown in 3D in vitro model can influence not only hair growth-related pathways but also immune system -related pathways compared to 2D cell monolayer. Furthermore, we compared the expression of signalling molecules and metabolism-associated proteins of HFDPC in minoxidil (FDA approved drug for hair loss treatment) and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (recently found to induce hair growth in vitro and in vivo) treated 3D and 2D cell cultures using microarray analysis. Conclusion Further validation of the results confirms the suitability of this cell line for 3D model while providing new insights such as to the mechanisms behind the hair growth effects of 3D spheroid treated with hair growth promoting agents.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Hoda Ahmed Moneib ◽  
Ghada Fathy Mohamed ◽  
Naglaa Samir Ahmed ◽  
Mahy El-Bassiouny El-Sayed Abou-Noor

Abstract Background Cellular and cell-derived components of adipose-derived tissue for the purposes of dermatologic and aesthetic rejuvenation applications have become increasingly studied and integrated into clinical practice. The hair follicle goes through phases of growth, regression, and quiescence, and it is suspected that adipocytes secrete factors to promote activation of hair follicles dermal papilla cells, increasing migration, and proliferation in vitro; as well as increasing conversion of hair follicles from the telogen to anagen phase in vivo. Objectives Evaluation of efficacy and safety of adipose-derived adult stem cells (ADSCs) injection in hair follicle regeneration in female pattern hair loss (FPHL). Methods 33 patients were included and divided into 3 groups according to Sinclair’s classification according to severity. ADSCs were extracted from lipoaspirate and injected into the frontoparietal scalp. Patients were assessed clinically, trichoscopically and immunohistochemically. Results At week 24, there was improvement of hair thickness and count, both in frontal and occipital areas. Histopathological and immunohistochemical assessment at week 12 showed decrease of perifollicular inflammation and decrease of DKK-1 immunostaining. Conclusion The use of ADSCs in treatment of FPHL in subjects included in this study showed improvement of perifollicular inflammation, in addition to density and thickness of hair.


1991 ◽  
Vol 99 (3) ◽  
pp. 627-636 ◽  
Author(s):  
C.A. Jahoda ◽  
A.J. Reynolds ◽  
C. Chaponnier ◽  
J.C. Forester ◽  
G. Gabbiani

We have examined the expression of smooth muscle alpha-actin in hair follicles in situ, and in hair follicle dermal cells in culture by means of immunohistochemistry. Smooth muscle alpha-actin was present in the dermal sheath component of rat vibrissa, rat pelage and human follicles. Dermal papilla cells within all types of follicles did not express the antigen. However, in culture a large percentage of both hair dermal papilla and dermal sheath cells were stained by this antibody. The same cells were negative when tested with an antibody to desmin. Overall, explant-derived skin fibroblasts had relatively low numbers of positively marked cells, but those from skin regions of high hair-follicle density displayed more smooth muscle alpha-actin expression than fibroblasts from areas with fewer follicles. 2-D SDS-PAGE confirmed that, unlike fibroblasts, cultured papilla cells contained significant quantities of the alpha-actin isoform. The rapid switching on of smooth muscle alpha-actin expression by dermal papilla cells in early culture, contrasts with the behaviour of smooth muscle cells in vitro, and has implications for control of expression of the antigen in normal adult systems. The very high percentage of positively marked cultured papilla and sheath cells also provides a novel marker of cells from follicle dermis, and reinforces the idea that they represent a specialized cell population, contributing to the heterogeneity of fibroblast cell types in the skin dermis, and possibly acting as a source of myofibroblasts during wound healing.


2020 ◽  
Vol 21 (14) ◽  
pp. 5137
Author(s):  
Jung Eun Kim ◽  
Yu Jin Lee ◽  
Hye Ree Park ◽  
Dong Geon Lee ◽  
Kwan Ho Jeong ◽  
...  

Topical or systemic administration of JAK inhibitors has been shown to be a new treatment modality for severe alopecia areata (AA). Some patients show a good response to JAK inhibitors, but frequently relapse after cessation of the treatment. There have been no guidelines about the indications and use of JAK inhibitors in treating AA. The basic pathomechanism of AA and the relevant role of JAK inhibitors should support how to efficiently use JAK inhibitors. We sought to investigate the effect of JAK1/2 inhibitor on an in vitro model of AA and to examine the possible mechanisms. We used interferon gamma-pretreated human dermal papilla cells (hDPCs) as an in vitro model of AA. Ruxolitinib was administered to the hDPCs, and cell viability was assessed. The change of expression of the Wnt/β-catenin pathway, molecules related to the JAK-STAT pathway, and growth factors in ruxolitinib-treated hDPCs was also examined by reverse transcription PCR and Western blot assay. We examined immune-privilege-related molecules by immunohistochemistry in hair-follicle culture models. Ruxolitinib did not affect the cell viability of the hDPCs. Ruxolitinib activated several molecules in the Wnt/β-catenin signaling pathway, including Lef1 and β-catenin, and suppressed the transcription of DKK1 in hDPCs, but not its translation. Ruxolitinib reverted IFN-γ-induced expression of caspase-1, IL-1β, IL-15, and IL-18, and stimulated several growth factors, such as FGF7. Ruxolitinib suppressed the phosphorylation of JAK1, JAK2 and JAK3, and STAT1 and 3 compared to IFN-γ pretreated hDPCs. Ruxolitinib pretreatment showed a protective effect on IFN-γ-induced expression of MHC-class II molecules in cultured hair follicles. In conclusion, ruxolitinib modulated and reverted the interferon-induced inflammatory changes by blocking the JAK-STAT pathway in hDPCs under an AA-like environment. Ruxolitinib directly stimulated anagen-re-entry signals in hDPCs by affecting the Wnt/β-catenin pathway and promoting growth factors in hDPCs. Ruxolitinib treatment prevented IFN-γ-induced collapse of hair-follicle immune privilege.


2021 ◽  
Vol 520 ◽  
pp. 111096
Author(s):  
Julieta María Ceruti ◽  
Florencia Maia Oppenheimer ◽  
Gustavo José Leirós ◽  
María Eugenia Balañá

2005 ◽  
Vol 14 (3) ◽  
pp. 209-214 ◽  
Author(s):  
Wei B. Yang ◽  
Fei Hao ◽  
Zhi Q. Song ◽  
Xi C. Yang ◽  
Bing Ni

2020 ◽  
Vol 21 (12) ◽  
pp. 4553
Author(s):  
Sung Min Kim ◽  
Jung-Il Kang ◽  
Hoon-Seok Yoon ◽  
Youn Kyung Choi ◽  
Ji Soo Go ◽  
...  

The hair follicle goes through repetitive cycles including anagen, catagen, and telogen. The interaction of dermal papilla cells (DPCs) and keratinocytes regulates the hair cycle and hair growth. Humanin was discovered in the surviving brain cells of patients with Alzheimer’s disease. HNG, a humanin analogue, activates cell growth, proliferation, and cell cycle progression, and it protects cells from apoptosis. This study was performed to investigate the promoting effect and action mechanisms of HNG on hair growth. HNG significantly increased DPC proliferation. HNG significantly increased hair shaft elongation in vibrissa hair follicle organ culture. In vivo experiment showed that HNG prolonged anagen duration and inhibited hair follicle cell apoptosis, indicating that HNG inhibited the transition from the anagen to catagen phase mice. Furthermore, HNG activated extracellular signal-regulated kinase (Erk)1/2, Akt, and signal transducer and activator of transcription (Stat3) within minutes and up-regulated vascular endothelial growth factor (VEGF) levels on DPCs. This means that HNG could induce the anagen phase longer by up-regulating VEGF, which is a Stat3 target gene and one of the anagen maintenance factors. HNG stimulated the anagen phase longer with VEGF up-regulation, and it prevented apoptosis by activating Erk1/2, Akt, and Stat3 signaling.


Sign in / Sign up

Export Citation Format

Share Document