scholarly journals Robust Fast Adaptive Fault Estimation for T-S Fuzzy Markovian Jumping Systems with Mode-Dependent Time-Varying State Delays

2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Chao Sun ◽  
Shengjuan Huang ◽  
Libing Wu ◽  
Suhuan Yi

This paper studies the problem of actuator fault estimation for a class of T-S fuzzy Markovian jumping systems, which is subject to mode-dependent interval time-varying delays and norm-bounded external disturbance. Based on the given fast adaptive estimation algorithm and by employing a novel Lyapunov–Krasovskii function candidate, a robust fault estimation scheme is proposed to estimate faults whose derivative is bounded. With this improved method, the proposed fault estimator minimizes the effect of disturbance on the estimation error and reduces the conservatism of systems stability results simultaneously. To be specific, an improved mode-dependent criterion for the existence of the fault estimation observer is established to guarantee the error dynamic system to be stochastically stable with a prescribed H ∞ performance and reduce the conservatism of designing procedure. Finally, three numerical examples are given to show the effectiveness of the proposed method.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Shuping He ◽  
Fei Liu

This paper studies the adaptive fault estimation problems for stochastic Markovian jump systems (MJSs) with time delays. With the aid of the selected Lyapunov-Krasovskii functional, the adaptive fault estimation algorithm based on adaptive observer is proposed to enhance the rapidity and accuracy performance of fault estimation. A sufficient condition on the existence of adaptive observer is presented and proved by means of linear matrix inequalities techniques. The presented results are extended to multiple time-delayed MJSs. Simulation results illustrate that the validity of the proposed adaptive faults estimation algorithms.


2006 ◽  
Vol 129 (3) ◽  
pp. 352-356 ◽  
Author(s):  
Wen Chen ◽  
Mehrdad Saif

This paper presents a novel fault diagnosis approach in satellite systems for identifying time-varying thruster faults. To overcome the difficulty in identifying time-varying thruster faults by adaptive observers, an iterative learning observer (ILO) is designed to achieve estimation of time-varying faults. The proposed ILO-based fault-identification strategy uses a learning mechanism to perform fault estimation instead of using integrators that are commonly used in classical adaptive observers. The stability of estimation-error dynamics is established and proved. An illustrative example clearly shows that time-varying thruster faults can be accurately identified.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Chao Ma

This paper investigates the finite-time passivity and passification design problem for a class of Markovian jumping systems with mode-dependent time-varying delays. By employing the Lyapunov-Krasovskii functional method, delay-dependent sufficient criteria are derived to ensure the mean-square stochastically finite-time passivity. Based on the established results, mode-dependent passification controller is further designed in terms of linear matrix inequalities, such that the prescribed passive performance index of the resulting closed-loop system can be satisfied. Finally, two illustrative examples are given to show the effectiveness of the obtained theoretical results.


2021 ◽  
Author(s):  
Mona Subramaniam ◽  
Tushar Jain ◽  
Joseph Yame

In this paper, we propose a novel bilinear observer- based robust fault detection, isolation and adaptive fault estimation methodology to precisely estimate a class of actuator faults, namely bias in damper position and lock-in-place faults, in Variable-Air-Volume (VAV) terminal units of Heating Ventilation and Air-Conditioning (HVAC) systems. The proposed adaptive fault estimator is robust in the sense that the fault estimates are not affected by the unmeasured disturbance variable and that the effects of measurement noises on fault estimates are attenuated. The fault estimation algorithm with the integrated building control system improves occupants comfort and reduces the operation, maintenance, and utility cost, thereby reducing the impact on the environment. The effectiveness of the methodology for adaptive estimation of multiple or single VAV damper faults is successfully demonstrated through different simulation scenarios with SIMBAD (SIMulator of Building And Devices), which is being used in industries for testing and validation of building energy management systems.


2017 ◽  
Vol 14 (2) ◽  
pp. 172988141769914 ◽  
Author(s):  
Jin Wang ◽  
Longze Hu ◽  
Fuyang Chen ◽  
Changyun Wen

This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.


2021 ◽  
Author(s):  
Mona Subramaniam ◽  
Tushar Jain ◽  
Joseph Yame

In this paper, we propose a novel bilinear observer- based robust fault detection, isolation and adaptive fault estimation methodology to precisely estimate a class of actuator faults, namely bias in damper position and lock-in-place faults, in Variable-Air-Volume (VAV) terminal units of Heating Ventilation and Air-Conditioning (HVAC) systems. The proposed adaptive fault estimator is robust in the sense that the fault estimates are not affected by the unmeasured disturbance variable and that the effects of measurement noises on fault estimates are attenuated. The fault estimation algorithm with the integrated building control system improves occupants comfort and reduces the operation, maintenance, and utility cost, thereby reducing the impact on the environment. The effectiveness of the methodology for adaptive estimation of multiple or single VAV damper faults is successfully demonstrated through different simulation scenarios with SIMBAD (SIMulator of Building And Devices), which is being used in industries for testing and validation of building energy management systems.


2021 ◽  
Author(s):  
Sihai Guan ◽  
Qing Cheng ◽  
Yong Zhao ◽  
Bharat Biswal

Abstract To better perform distributed estimation, this paper, by combining the Fair cost function and adapt-then-combine scheme at all distributed network nodes, a novel diffusion adaptive estimation algorithm is proposed from an M-estimator perspective, which is called the diffusion Fair (DFair) adaptive filtering algorithm. The stability of the mean estimation error and the computational complexity of the DFair are theoretically analyzed. Compared with the RDLMS, DNLMM, DGCLD, and DPLMS algorithms, the simulation experiment results show that the DFair algorithm is more robust to input signals and impulsive interference. In conclusion, Theoretical analysis and simulation results show that the DFair algorithm performs better when estimating an unknown linear system in the changeable impulsive interference environments.


Sign in / Sign up

Export Citation Format

Share Document