scholarly journals Integrated Train Rescheduling and Rerouting during Multidisturbances under a Quasi-Moving Block System

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Peijuan Xu ◽  
Dawei Zhang ◽  
Jingwei Guo ◽  
Dan Liu ◽  
Hui Peng

It is known that it is critical for train rescheduling problem to address some uncertain disturbances to keep the normal condition of railway traffic. This paper is keen on a mathematical model to reschedule high-speed trains controlled by the quasi-moving blocking signalling system impacted by multidisturbances (i.e., primary delay, speed limitation, and siding line blockage). To be specific, a mixed-integer linear programming is formulated based on an improved alternative graph theory, by the means of rerouting, reordering, retiming, and train control. In order to adjust the train speed and find the best routes for trains, the set of alternative arcs and alternative arrival/departure paths are considered in the constraints, respectively. Due to this complex NP-hard problem, a two-step algorithm with three scheduling rules based on a commercial optimizer is applied to solve the problem efficiently in a real-word case, and the efficiency, validity, and feasibility of this method are demonstrated by a series of experimental tests. Finally, the graphical timetables rescheduled are analysed in terms of free conflicts of the solution. Consequently, the proposed mathematical model enriches the existing theory about train rescheduling, and it can also assist train dispatchers to figure out disturbances efficiently.

Author(s):  
Peijuan Xu ◽  
Francesco Corman ◽  
Qiyuan Peng ◽  
Xiaojie Luan

Research focused on the real-time rescheduling of high-speed railway traffic with a quasi-moving blocking system and transition process affected by the entrance delays and disruptions determining speed limitation. A mixed-integer linear program model related to a job shop model of operations is formulated to reduce the final delay (tardiness) of trains, where three objective functions combine different manners related to traffic control and speed management. The dynamic interaction between train speed and distance headway is considered in the model. Through experiments on a real-world high-speed line in China, the solution quality of the model is assessed by the delay distribution of trains or the smooth degree of train speed profile. The model manages to optimize traffic in the transition from a disordered condition (when disruptions appear) to a normal condition (after disruptions) for real-time operations. In conclusion, there are two and three transition phases for the cases without and with entrance delays, respectively, seen by analyzing the deviation between the rescheduled and planned timetables.


Author(s):  
Minling Feng ◽  
Chaoxian Wu ◽  
Shaofeng Lu ◽  
Yihui Wang

Automatic train operation (ATO) systems are fast becoming one of the key components of the intelligent high-speed railway (HSR). Designing an effective optimal speed trajectory for ATO is critical to guide the high-speed train (HST) to operate with high service quality in a more energy-efficient way. In many advanced HSR systems, the traction/braking systems would provide multiple notches to satisfy the traction/braking demands. This paper modelled the applied force as a controlled variable based on the selection of notch to realise a notch-based train speed trajectory optimisation model to be solved by mixed integer linear programming (MILP). A notch selection model with flexible vertical relaxation was proposed to allow the traction/braking efforts to change dynamically along with the selected notch by introducing a series of binary variables. Two case studies were proposed in this paper where Case study 1 was conducted to investigate the impact of the dynamic notch selection on train operations, and the optimal result indicates that the applied force can be flexibly adjusted corresponding to different notches following a similar operation sequence determined by optimal train control theory. Moreover, in addition to the maximum traction/braking notches and coasting, medium notches with appropriate vertical relaxation would be applied in accordance with the specific traction/braking demands to make the model feasible. In Case study 2, a comprehensive numerical example with the parameters of CRH380AL HST demonstrates the robustness of the model to deal with the varying speed limit and gradient in a real-world scenario. The notch-based model is able to obtain a more realistic optimal strategy containing dynamic notch selection and speed trajectory with an increase (1.622%) in energy consumption by comparing the results of the proposed model and the non-notch model.


Volume 2 ◽  
2004 ◽  
Author(s):  
M. H. Kargarnovin ◽  
D. Younesian ◽  
D. J. Thompson ◽  
C. J. C. Jones

The ride comfort of high-speed trains passing over railway bridges is studied in this paper. The effects of some nonlinear parameters in a carriage-track-bridge system are investigated such as the load-stiffening characteristics of the rail-pad and the ballast, rubber elements in the primary and secondary suspensions systems. The influence of the track irregularity and train speed on two comfort indicators, namely Sperling’s comfort index and the maximum acceleration level, are also studied. Timoshenko beam theory is used for modelling the rail and bridge and two layers of parallel damped springs in conjunction with a layer of mass are used to model the rail-pads, sleepers and ballast. A randomly irregular vertical track profile is modelled, characterised by a power spectral density (PSD). The ‘roughness’ is generated for three classes of tracks. Nonlinear Hertz theory is used for modelling the wheel-rail contact.


2015 ◽  
Vol 764-765 ◽  
pp. 644-648
Author(s):  
Yit Jin Chen ◽  
Chi Jim Chen

This paper presents an automatic prediction model for ground vibration induced by Taiwan high-speed trains on embankment structures. The prediction model is developed using different field-measured ground vibration data. The main characteristics that affect the overall vibration level are established based on the database of measurement results. The influence factors include train speed, ground condition, measurement distance, and supported structure. Support vector machine (SVM) algorithm, a widely used prediction model, is adopted to predict the vibration level induced by high-speed trains on embankments. The measured and predicted vibration levels are compared to verify the reliability of the prediction model. Analysis results show that the developed SVM model can reasonably predict vibration level with an accuracy rate of 72% to 84% for four types of vibration level, including overall, low, middle, and high frequency ranges. The methodology in developing the automatic prediction system for ground vibration level is also presented in this paper.


Author(s):  
Yayun Qi ◽  
Huanyun Dai

With the increase of train speed, the harmonic torque of the traction motor of a high-speed train is not a negligible source of excitation. In order to explore the influence of the harmonic torque of the motor on wheel wear, a high-speed EMU vehicle model was established based on the multibody dynamics theory. FASTSIM was used to calculate the wear parameters, and the Zobory wear model was used to calculate the depth of the wheel wear. The influence of the harmonic torque of the motor on the wear parameters and wear depth of high-speed trains under straight and curve conditions is calculated, respectively. The simulation results show that the harmonic torque has a large influence on the wheel rail vertical force and the longitudinal creep force and has little influence on the lateral creep force. With the 30% harmonic torque, the wheel rail vertical force increases by 7.6%, the longitudinal creep force increases by 15%, and the lateral creep force increases by 4%. The amplitude of the longitudinal creepage increases by 14.2% when the harmonic torque is 10%, and increases by 34.4% when the harmonic torque is 30%. When the harmonic torque increases, the wheel wear depth increases, the 10% harmonic torque increases by 3% and the 30% harmonic torque increases by 8%, and the increase of the motor harmonic component accelerates the wheel wear. At the same time, small longitudinal positioning stiffness can help to reduce the influence of the harmonic torque, and the selection of the longitudinal positioning stiffness needs to consider the dynamic performance of the vehicle.


2013 ◽  
Vol 361-363 ◽  
pp. 1536-1542
Author(s):  
Zhou Shi ◽  
Jun Li Guo ◽  
Wei Feng Su ◽  
Shuang Yang Zhang

The special dynamic pulsating air pressure acting on the surface of sound barrier can be aroused by passing high speed train, making sound barrier structure and components prone to destruction and other issues. Based 3-D unsteady k-ε two-equation turbulent model, dynamic processes of high-speed trains passing the sound barrier region at different speeds and many factors are simulated and analyzed by using moving mesh finite volume method. The results of dynamic numerical calculated pulsating air pressure results and the effecting rule of various parameters were obtained, and compared with the measured data. It is showed that the air pressure value increases with the increasing train speed and the dynamic numerical calculated pulsating air pressure curves shape and effecting rule of parameters are all well matched with the measured data, but the air pressure value is slightly larger. At last, based on the results of numerical calculation, the addition of static air pressure value caused by high speed train is put forward.


Author(s):  
H. Farahpour ◽  
D. Younesian ◽  
E. Esmailzadeh

Ride comfort of high-speed trains is studied using Sperling's comfort index. Dynamic model is developed in the frequency domain and the power spectral density (PSD) of the body acceleration is obtained for four classes of tracks. The obtained acceleration PSD is then filtered using Sperling's filter. The effects of the rail roughness and train speed on the comfort indicators are investigated. A parametric study is also carried out to evaluate the effects of the primary and secondary suspension systems on the comfort indicators.


Author(s):  
T. V. Butko ◽  
V. M. Prokhorov ◽  
L. O. Parkhomenko ◽  
A. O. Prokopov

Purpose. The main purpose of the authors is to define and methodically substantiate the ways to increase the efficiency of intermodal passenger transportations with the involvement of high-speed trains as an auxiliary mode of transport in terms of sea and river tourism. Methodology. In the process of research the following was used: the method of factor analysis – to determine the factors influencing the attractiveness of tourist travel using high-speed trains as ancillary transport; method of skipping stops – to increase the efficiency of using high-speed trains as an auxiliary mode of transport when making tourist trips; methods of construction and training of generative-adversarial networks for the formation of model of passenger flows forecasting, on the basis of historical data of multivariate time series; method of genetic algorithms – to optimize the model of mixed-integer programming, which allows obtaining the optimal scheme of high-speed trains on the line. Findings. In order to preserve the attractiveness of tourist travels and increase the route speed of trains, it is proposed to improve the technology of planning their work based on the method of skipping stops. A mathematical model of mixed-integer programming has been formed, which simultaneously provides the attractiveness of tourist travel and profitability for railway operators. To prepare the initial data, a method for forecasting passenger flows based on multivariate time series has been developed. The optimization procedure of the generated model was implemented in the form of software in the Matlab language. Originality. The method of skipping stops, which was first used to improve the technology of intermodal passenger traffic, was further developed in the work. An original method for predicting passenger flows based on multivariate time series using a modern model of generative-competitive neural networks is proposed. Practical value. The obtained results are aimed at improving the methodological approaches to the formation of modern technologies of intermodal passenger transportation and the realization of the potential of high-speed rail transportations as a basis for the comprehensive development of tourism.


2020 ◽  
Vol 27 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Paweł Śliwiński

AbstractIn this paper, mechanical losses in a hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties) are described and compared. The experimental tests were conducted using a special design (prototype) of a hydraulic satellite motor. The design of the satellite motor is presented. This motor was developed to supply both with water and mineral oil and features a non-circular tooth working mechanism. The paper also characterizes sources of mechanical losses in this motor. On this basis, a mathematical model of these losses has been developed and presented. The results of calculation of mechanical losses according to the model are compared with the experimental results. Experimental studies have shown that the mechanical losses in the motor supplied with water are 2.8 times greater than those in the motor supplied with oil. The work demonstrates that the mechanical losses in both the motor supplied with water and the one supplied with oil are described well by the mathematical model. It has been found that for the loaded motor working at high speed, the simulation results differ from experimental ones by no more than 3% for oil and 4% for water.


Sign in / Sign up

Export Citation Format

Share Document