scholarly journals The Evaluation Method of Rock Mass Stability Based on Natural Frequency

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mowen Xie ◽  
Weinan Liu ◽  
Yan Du ◽  
Qingbo Li ◽  
Hongfei Wang

The limit equilibrium method’s analysis index cannot be measured by on-site monitoring equipment and cannot be used for monitoring and early warning of rock instability. The existing rock stability evaluation methods based on vibration information cannot evaluate the stability of rocks quantitatively. In this paper, the slope’s constraints on the rock were simplified to springs and a three-dimensional analysis model of rock vibration was established. The equation for calculating the natural frequency of rock that includes the spring stiffness as an indicator was derived. The rock stability calculation function containing the index of natural frequency was brought into the traditional rock stability coefficient calculation equation, and a new rock stability analysis method based on natural frequency was established. The experiment proved the measurability of the index of the natural frequency of rock and the method’s effectiveness for the stability analysis of the rock based on natural frequency.

2012 ◽  
Vol 249-250 ◽  
pp. 1099-1102
Author(s):  
Yi Sheng Huang ◽  
Jian Lin Li

Amending the normal stress over the slip surface based on the stress field by numerical analysis, applying the three-dimensional global limit equilibrium method to the stability analysis of tension-slackened rock mass in the right bank of Yagen hydropower station. Stability analysis shows that if do not take any measures, the loose rock mass stability can cater to the Specification demand, but some small sliders is in the limit state under the water and earthquake condition, if use the cutting slope and unloading scheme, the whole loose rock mass and the all small sliders can meet the Specification standard stability requirements.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xiao-ming Liu ◽  
Rui Zhang ◽  
Jie Han ◽  
Sha Chen

Axisymmetric concave slopes, one special type of three-dimensional (3D) slopes, may be encountered in mining and civil engineering practice. Analysis of 3D slopes is generally complex and mostly relies on complicated numerical simulations. This paper proposes an elastoplastic solution for determining the additional shear resistances due to spatial effects of axisymmetric concave slopes. By incorporating the extra antislide forces, this paper proposes a simplified two-dimensional (2D) limit equilibrium procedure for the stability analysis of axisymmetric concave slopes. Combined with an iteration algorithm, the procedure can obtain the factors of safety for axisymmetric concave slopes in a simple and efficient way. Comparisons of the results from the proposed method and the numerical software FLAC3D are performed to demonstrate the validity of the proposed method for practical applications. Finally, the effects of several key parameters on the stability of axisymmetric concave slopes are investigated through a parametric study.


2013 ◽  
Vol 275-277 ◽  
pp. 1427-1430
Author(s):  
Yi Sheng Huang ◽  
Jian Lin Li

Firstly analyzed the stability of blocks with block theory and secondly evaluated the stability of blocks with three-dimensional limit equilibrium method and finally evaluated the whole stability of slopes. Stability analysis for the slope of Maerdang hydropower station shows that natural slopes which belong to the upstream of Hadehei ditch on the right bank will not occur wedge slide, tailrace slopes of hydropower station have not sliding slopes searched which are in potential slide, if taking some measures to reinforce the stability of man-made slopes on the face rock-fill hub, which may meet the demand of the specification.


2021 ◽  
Vol 11 (8) ◽  
pp. 3663
Author(s):  
Tianlong Lei ◽  
Jixin Wang ◽  
Zongwei Yao

This study constructs a nonlinear dynamic model of articulated vehicles and a model of hydraulic steering system. The equations of state required for nonlinear vehicle dynamics models, stability analysis models, and corresponding eigenvalue analysis are obtained by constructing Newtonian mechanical equilibrium equations. The objective and subjective causes of the snake oscillation and relevant indicators for evaluating snake instability are analysed using several vehicle state parameters. The influencing factors of vehicle stability and specific action mechanism of the corresponding factors are analysed by combining the eigenvalue method with multiple vehicle state parameters. The centre of mass position and hydraulic system have a more substantial influence on the stability of vehicles than the other parameters. Vehicles can be in a complex state of snaking and deviating. Different eigenvalues have varying effects on different forms of instability. The critical velocity of the linear stability analysis model obtained through the eigenvalue method is relatively lower than the critical velocity of the nonlinear model.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Liaojun Zhang ◽  
Tianxiao Ma ◽  
Hanyun Zhang ◽  
Dongsheng Chen

The instability of dams will bring immeasurable personal and property losses to the downstream, so it has always been a trendy topic worthy of investigation. Currently, the rigid body limit equilibrium method is the most commonly used method for the dynamic stability analysis of dams. However, under the action of earthquakes, the instability of the integral dam-foundation system threatens the safety of the dams and is of great concern. In this paper, a stability analysis method that can reflect the complex geological structural forms of dam foundations is proposed in this paper. The advantages are that this method deals with the difficulty in assuming sliding surfaces and the lack of quantitative criteria for the dynamic instability analysis of dams with complex geological structural forms of dam foundations. In addition, through the method, the sliding channels that may appear in the dam foundations can be automatically searched under random earthquake action, and the safety factors of the dynamic instability of dams be quantitatively obtained. Taking a high RCC gravity dam under construction in China as an example, the proposed method is applied to the three-dimensional finite element model of the dam-foundation system of this dam, and then the dynamic stability calculation is carried out. Through this method, the formation process of the dam foundation’s plastic zone and the failure of sliding channels with different strength reduction coefficients are studied on and analyzed detailedly, and the quantitative acquisition of the safety factors is realized. The results show that the method is reasonable and feasible, and helps provide a new idea and method for the dynamic stability analysis of dams.


2018 ◽  
Vol 841 ◽  
pp. 636-653
Author(s):  
Ting-Yueh Chang ◽  
Falin Chen ◽  
Min-Hsing Chang

A three-dimensional linear stability analysis is carried out for a convecting layer in which both the temperature and solute distributions are linear in the horizontal direction. The three-dimensional results show that, for $Le=3$ and 100, the most unstable mode occurs invariably as the longitudinal mode, a vortex roll with its axis perpendicular to the longitudinal plane, suggesting that the two-dimensional results are sufficient to illustrate the stability characteristics of the convecting layer. Two-dimensional results show that the stability boundaries of the transverse mode (a vortex roll with its axis perpendicular to the transverse plane) and the longitudinal modes are virtually overlapped in the regime dominated by thermal diffusion and the regime dominated by solute diffusion, while these two modes hold a significant difference in the regime the salt-finger instability prevails. More precisely, the instability area in terms of thermal Grashof number $Gr$ and solute Grashof number $Gs$ is larger for the longitudinal mode than the transverse mode, implying that, under any circumstance, the longitudinal mode is always more unstable than the transverse mode.


2013 ◽  
Vol 353-356 ◽  
pp. 398-402
Author(s):  
Xiao Yu Zhang ◽  
Feng Ming Liu ◽  
Gang Chen

The initial stress of rock is a basic parameter, which can be used for surrounding rock stability analysis, exploitation and support design. By utilizing stress relief method of hollow inclusion with its characters of high precision and obtaining three dimensional stress at one time, we have measured three dimensional stress magnitude and direction in north wing roadway (-850m) and 710 open-off cut (-1000m), respectively. The results show that the horizontal tectonic stress is obvious in this coal area.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


Sign in / Sign up

Export Citation Format

Share Document