scholarly journals Energy Balanced Source Location Privacy Scheme Using Multibranch Path in WSNs for IoT

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huijiao Wang ◽  
Lin Wu ◽  
Qing Zhao ◽  
Yongzhuang Wei ◽  
Hua Jiang

Source location privacy, one of the core contents of Wireless Sensor Network (WSN) security, has a significant impact on extensive application of WSNs. In this paper, a novel location privacy protection routing scheme called Energy Balanced Branch Tree (EBBT) is proposed by using multibranch and fake sources. This scheme has three phases. In the first place, the data of the source are randomly sent to a certain intermediate node. Then, a minimum hop routing (MHR) from the intermediate node to the base station is formed. Then, branch paths with fake sources are generated dynamically from some nodes on the MHR path. Finally, a tree-shaped structure from real source nodes and fake source nodes to the base station is achieved. In difference to the previous schemes, the location of the real source in the EBBT scheme does not affect the location and the number of fake sources. During the formation of the tree-shaped multibranch paths, the residual energy of nodes is considered sufficiently, and the control of the direction of each branch path is also involved. The influence of the number and length of branches on the network lifetime and network security is also investigated. Experimental results show that the proposed algorithm has the advantages of long network security period and lifetime, as well as high path diversity. Our simulation further illustrates that the EBBT scheme has favorable privacy of the source location without changing the network lifetime.

2019 ◽  
Vol 148 ◽  
pp. 142-150 ◽  
Author(s):  
Hao Wang ◽  
Guangjie Han ◽  
Lina Zhou ◽  
James Adu Ansere ◽  
Wenbo Zhang

Author(s):  
Jyoti Prakash Singh ◽  
Paramartha Dutta

One of the important application domain of sensor network is monitoring a region and/or tracking a target. In such type of applications, the location of the source node tracking that target is very important. At the same time, if the location of the node currently tracking the target is captured by an adversary then that target may fall into a difficult situation. In this chapter, a solution to source location privacy with the help of Ant Colony Optimization is proposed. The idea of pheromone level is normally used to find out the shortest path between the source node and the base station that to minimize the energy consumption of the networks. The pheromone level of the ants is used here to guide the ants to follow different paths to hide the source location from adversaries who uses traffic analysis to capture the source node.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2074 ◽  
Author(s):  
Qiuhua Wang ◽  
Jiacheng Zhan ◽  
Xiaoqin Ouyang ◽  
Yizhi Ren

Wireless Sensor Networks (WSNs) have been widely deployed to monitor valuable objects. In these applications, the sensor node senses the existence of objects and transmitting data packets to the sink node (SN) in a multi hop fashion. The SN is a powerful node with high performance and is used to collect all the information sensed by the sensor nodes. Due to the open nature of the wireless medium, it is easy for an adversary to trace back along the routing path of the packets and get the location of the source node. Once adversaries have got the source node location, they can capture the monitored targets. Thus, it is important to protect the source node location privacy in WSNs. Many methods have been proposed to deal with this source location privacy protection problem, and most of them provide routing path diversity by using phantom node (PN) which is a fake source node used to entice the adversaries away from the actual source node. But in the existing schemes, the PN is determined by the source node via flooding, which not only consumes a lot of communication overhead, but also shortens the safety period of the source node. In view of the above problems, we propose two new grid-based source location privacy protection schemes in WSNs called grid-based single phantom node source location privacy protection scheme (SPS) and grid-based dual phantom node source location privacy protection scheme (DPS) in this paper. Different from the idea of determining the phantom node by the source node in the existing schemes, we propose to use powerful sink node to help the source node to determine the phantom node candidate set (PNCS), from which the source node randomly selects a phantom node acting as a fake source node. We evaluate our schemes through theoretical analysis and experiments. Experimental results show that compared with other schemes, our proposed schemes are more efficient and achieves higher security, as well as keeping lower total energy consumption. Our proposed schemes can protect the location privacy of the source node even in resource-constrained wireless network environments.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 632 ◽  
Author(s):  
Yiting Wang ◽  
Liang Liu ◽  
Wenzhao Gao

With the aim of addressing the problem of high overhead and unstable performance of the existing Source Location Privacy (SLP) protection algorithms, this paper proposes an efficient algorithm based on Circular Trap (CT) which integrates the routing layer and MAC layer protocol to provide SLP protection for WSNs. This algorithm allocates time slots for each node in the network by using Time Division Multiple Access (TDMA) technology, so that data loss caused by channel collisions can be avoided. At the same time, a circular trap route is formed to induce an attacker to first detect the packets from the nodes on the circular route, thereby moving away from the real route and protecting the SLP. The experimental results demonstrate that the CT algorithm can prevent the attacker from tracking the source location by 20% to 50% compared to the existing cross-layer SLP-aware algorithm.


Sign in / Sign up

Export Citation Format

Share Document