scholarly journals Remote Sensing Image Scene Classification Based on Fusion Method

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Liancheng Yin ◽  
Peiyi Yang ◽  
Keming Mao ◽  
Qian Liu

Remote sensing image scene classification is a hot research area for its wide applications. More recently, fusion-based methods attract much attention since they are considered to be an useful way for scene feature representation. This paper explores the fusion-based method for remote sensing image scene classification from another viewpoint. First, it is categorized as front side fusion mode, middle side fusion mode, and back side fusion mode. For each fusion mode, the related methods are introduced and described. Then, classification performances of the single side fusion mode and hybrid side fusion mode (combinations of single side fusion) are evaluated. Comprehensive experiments on UC Merced, WHU-RS19, and NWPU-RESISC45 datasets give the comparison result among various fusion methods. The performance comparisons of various modes, and interactions among different fusion modes are also discussed. It is concluded that (1) fusion is an effective way to improve model performance, (2) back side fusion is the most powerful fusion mode, and (3) method with random crop+multiple backbone+average achieves the best performance.

2019 ◽  
Vol 11 (21) ◽  
pp. 2504 ◽  
Author(s):  
Jun Zhang ◽  
Min Zhang ◽  
Lukui Shi ◽  
Wenjie Yan ◽  
Bin Pan

Scene classification is one of the bases for automatic remote sensing image interpretation. Recently, deep convolutional neural networks have presented promising performance in high-resolution remote sensing scene classification research. In general, most researchers directly use raw deep features extracted from the convolutional networks to classify scenes. However, this strategy only considers single scale features, which cannot describe both the local and global features of images. In fact, the dissimilarity of scene targets in the same category may result in convolutional features being unable to classify them into the same category. Besides, the similarity of the global features in different categories may also lead to failure of fully connected layer features to distinguish them. To address these issues, we propose a scene classification method based on multi-scale deep feature representation (MDFR), which mainly includes two contributions: (1) region-based features selection and representation; and (2) multi-scale features fusion. Initially, the proposed method filters the multi-scale deep features extracted from pre-trained convolutional networks. Subsequently, these features are fused via two efficient fusion methods. Our method utilizes the complementarity between local features and global features by effectively exploiting the features of different scales and discarding the redundant information in features. Experimental results on three benchmark high-resolution remote sensing image datasets indicate that the proposed method is comparable to some state-of-the-art algorithms.


2019 ◽  
Vol 11 (24) ◽  
pp. 3006 ◽  
Author(s):  
Yafei Lv ◽  
Xiaohan Zhang ◽  
Wei Xiong ◽  
Yaqi Cui ◽  
Mi Cai

Remote sensing image scene classification (RSISC) is an active task in the remote sensing community and has attracted great attention due to its wide applications. Recently, the deep convolutional neural networks (CNNs)-based methods have witnessed a remarkable breakthrough in performance of remote sensing image scene classification. However, the problem that the feature representation is not discriminative enough still exists, which is mainly caused by the characteristic of inter-class similarity and intra-class diversity. In this paper, we propose an efficient end-to-end local-global-fusion feature extraction (LGFFE) network for a more discriminative feature representation. Specifically, global and local features are extracted from channel and spatial dimensions respectively, based on a high-level feature map from deep CNNs. For the local features, a novel recurrent neural network (RNN)-based attention module is first proposed to capture the spatial layout information and context information across different regions. Gated recurrent units (GRUs) is then exploited to generate the important weight of each region by taking a sequence of features from image patches as input. A reweighed regional feature representation can be obtained by focusing on the key region. Then, the final feature representation can be acquired by fusing the local and global features. The whole process of feature extraction and feature fusion can be trained in an end-to-end manner. Finally, extensive experiments have been conducted on four public and widely used datasets and experimental results show that our method LGFFE outperforms baseline methods and achieves state-of-the-art results.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


2020 ◽  
Vol 17 (6) ◽  
pp. 968-972 ◽  
Author(s):  
Tianyu Wei ◽  
Jue Wang ◽  
Wenchao Liu ◽  
He Chen ◽  
Hao Shi

2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


2021 ◽  
Vol 13 (3) ◽  
pp. 433
Author(s):  
Junge Shen ◽  
Tong Zhang ◽  
Yichen Wang ◽  
Ruxin Wang ◽  
Qi Wang ◽  
...  

Remote sensing images contain complex backgrounds and multi-scale objects, which pose a challenging task for scene classification. The performance is highly dependent on the capacity of the scene representation as well as the discriminability of the classifier. Although multiple models possess better properties than a single model on these aspects, the fusion strategy for these models is a key component to maximize the final accuracy. In this paper, we construct a novel dual-model architecture with a grouping-attention-fusion strategy to improve the performance of scene classification. Specifically, the model employs two different convolutional neural networks (CNNs) for feature extraction, where the grouping-attention-fusion strategy is used to fuse the features of the CNNs in a fine and multi-scale manner. In this way, the resultant feature representation of the scene is enhanced. Moreover, to address the issue of similar appearances between different scenes, we develop a loss function which encourages small intra-class diversities and large inter-class distances. Extensive experiments are conducted on four scene classification datasets include the UCM land-use dataset, the WHU-RS19 dataset, the AID dataset, and the OPTIMAL-31 dataset. The experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-arts.


Sign in / Sign up

Export Citation Format

Share Document