scholarly journals Realization of a Secure Visible Light Communication System via Chaos Synchronization

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Teh-Lu Liao ◽  
Chih-Yung Chen ◽  
Hsin-Chieh Chen ◽  
Yung-Yi Chen ◽  
Yi-You Hou

A novel technique for transmission of information through visible light communication (VLC) is developed in this study. A light-emitting diode is used as the light source at the transmitting side to send the encrypted information. At the receiving side, a light sensor, OPT-101, is used to receive the light signals that carry the encrypted information. The Arduino Due microcontroller board is used for digital signal processing at both the transmitting and receiving sides. Furthermore, to prevent the transmitted message from being intercepted, two chaotic systems, a master and a slave, with a synchronization controller are designed to obtain the transmitted audio signals. The design enables not only a VLC system with the light transmission path as a straight line (so that data cannot be stolen) but also the encryption of the audio signals with the chaotic system (Rössler system) to enhance data transmission security. The effectiveness of this system is then experimentally verified.

With the episodic increase of advancement in technology, wireless communication has become the need of the hour. The rate at which the use of wireless technology is being developed is tremendous. However, with the increase in usage, there has been unfortunately an increase in network complexity. In order to resolve the crisis of radio frequency spectrum, a newly developed technology has been proposed. This technology has been coined as Li-Fi: Light Fidelity. It is a technology, based on Visible Light Communication, which is used to transmit signals and data from one system to another with the help of a Led. The paper proposes a transmission system which will be responsible for transmitting audio signals from one system to another with the help of Li-Fi. Here a light emitting diode acts as the Li-Fi transmitter and photodiode acting as a Li-Fi receiver.The spontaneous switching of the Led enables propagation of signals through a wireless channel and is picked up by the receiving photodiode. The photodiode adhering to its functiontransforms the optical signals into electrical signals and therefore original data is retrieved and transferred. Additionally, with proposition to the system, a comparative study has been delineated with the already existing system.The existing system of networking and communications involve Wi-fi. The emergence and usage of Li-fi is necessary because it offers a substantially similar user experience to Wi-Fi except using the light spectrum. It is essential as it will able to meet up the connectivity demands of future as it is able to unlock unprecedented data and bandwidth.


2021 ◽  
pp. 63-68
Author(s):  
Daniil S. Shiryaev ◽  
Olga A. Kozyreva ◽  
Ivan S. Polukhin ◽  
Sergey A. Shcheglov ◽  
Svetlana A. Degtiareva ◽  
...  

The system of intellectual lighting data transmission via visible light is developed and manufactured. Spectral characteristics of a downlink which uses the red crystal of a RGBW light emitting diode for data transfer were studied. The DALI protocol-based radiation chromaticity control system which allows us to set different lighting scenarios with constant data transmission rate was developed. The radiation chromaticity range covers almost the entire colour gamut in the colour space. The system of high-frequency matching of system component impedances was developed and frequency characteristics of the suggested scheme were studied for development of the system. Optimal parameters of the signal for visual light communication such as carrier frequency, modulation type and band were determined. Observation of the constellation diagram which represents different values of the complex amplitude of the keyed signal in the form of a complex number on a quadrature plane (cosine and sine components of the carrying signal) and of fixation of the amplitude of the error vector magnitude (EVM) was selected as a method of study of the transmission channel quality. The value of EVM in the visible light transmission channel was significantly lower for signals with amplitude modulation than for phase-manipulated signals. When implementing different lighting change scenarios, radiation of other crystals of the light emitting diode crystals not used for transmission did not lead to increase of EVM by more than one percent.


2017 ◽  
Vol 54 (5) ◽  
pp. 050602
Author(s):  
张宇飞 Zhang Yufei ◽  
张洪明 Zhang Hongming ◽  
王鹏 Wang Peng ◽  
刘涛 Liu Tao ◽  
孙德栋 Sun Dedong ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1713
Author(s):  
Hyunwoo Jung ◽  
Sung-Man Kim

We experimentally demonstrated full-duplex light-emitting diode (LED)-to-LED visible light communication (VLC) using LEDs as the transmitter and receiver. Firstly, we investigated the performance dependency on the wavelengths of the LED transmitter and receiver by measuring the rise time and signal-to-noise ratio (SNR). Through the investigation, we were able to choose the optimal LED color set for LED-to-LED VLC using Shannon’s channel capacity law. The bit error rate (BER) results of full-duplex and half-duplex LED-to-LED VLC systems with the optimal LED sets are shown to compare the performance. Furthermore, we discuss major distortions and signal losses in the full-duplex LED-to-LED VLC system.


2021 ◽  
Vol 18 (4) ◽  
pp. 7-24
Author(s):  
Svetlana Grigoryeva ◽  
Alexander Baklanov ◽  
Aslima Alimkhanova ◽  
Alexander Dmitriev ◽  
György Györök

Sign in / Sign up

Export Citation Format

Share Document