scholarly journals Feature Selection of the Rich Model Based on the Correlation of Feature Components

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shunhao Jin ◽  
Fenlin Liu ◽  
Chunfang Yang ◽  
Yuanyuan Ma ◽  
Yuan Liu

Currently, the popular Rich Model steganalysis features usually contain a large number of redundant feature components which may bring “curse of dimensionality” and large computation cost, but the existing feature selection methods are difficult to effectively reduce the dimensionality when there are many strongly correlated effective feature components. This paper proposes a novel selection method for Rich Model steganalysis features. First, the separability of each feature component in the submodels of Rich Model is measured based on the Fisher criterion, and the feature components are sorted in the descending order based on the separability. Second, the correlation coefficient between any two feature components in each submodel is calculated, and feature selection is performed according to the Fisher value of each component and the correlation coefficients. Finally, the selected submodels are combined as the final steganalysis feature. The results show that the proposed feature selection method can effectively reduce the dimensionalities of JPEG domain and spatial domain Rich Model steganalysis features without affecting the detection accuracies.


2014 ◽  
Vol 13 (2) ◽  
pp. 134-145 ◽  
Author(s):  
Iwona Bąk

Abstract The purpose of this article is to determine the influence of various methods of selection of diagnostic features on the sensitivity of classification. Three options of feature selection are presented: a parametric feature selection method with a sum (option I), a median of the correlation coefficients matrix column elements (option II) and the method of a reversed matrix (option III). Efficiency of the groupings was verified by the indicators of homogeneity, heterogeneity and the correctness of grouping. In the assessment of group efficiency the approach with the Weber median was used. The undertaken problem was illustrated with a research into the tourist attractiveness of voivodships in Poland in 2011.



Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.



Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.





Author(s):  
GULDEN UCHYIGIT ◽  
KEITH CLARK

Text classification is the problem of classifying a set of documents into a pre-defined set of classes. A major problem with text classification problems is the high dimensionality of the feature space. Only a small subset of these words are feature words which can be used in determining a document's class, while the rest adds noise and can make the results unreliable and significantly increase computational time. A common approach in dealing with this problem is feature selection where the number of words in the feature space are significantly reduced. In this paper we present the experiments of a comparative study of feature selection methods used for text classification. Ten feature selection methods were evaluated in this study including the new feature selection method, called the GU metric. The other feature selection methods evaluated in this study are: Chi-Squared (χ2) statistic, NGL coefficient, GSS coefficient, Mutual Information, Information Gain, Odds Ratio, Term Frequency, Fisher Criterion, BSS/WSS coefficient. The experimental evaluations show that the GU metric obtained the best F1 and F2 scores. The experiments were performed on the 20 Newsgroups data sets with the Naive Bayesian Probabilistic Classifier.



Repositor ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Hendra Saputra ◽  
Setio Basuki ◽  
Mahar Faiqurahman

AbstrakPertumbuhan Malware Android telah meningkat secara signifikan seiring dengan majunya jaman dan meninggkatnya keragaman teknik dalam pengembangan Android. Teknik Machine Learning adalah metode yang saat ini bisa kita gunakan dalam memodelkan pola fitur statis dan dinamis dari Malware Android. Dalam tingkat keakurasian dari klasifikasi jenis Malware peneliti menghubungkan antara fitur aplikasi dengan fitur yang dibutuhkan dari setiap jenis kategori Malware. Kategori jenis Malware yang digunakan merupakan jenis Malware yang banyak beredar saat ini. Untuk mengklasifikasi jenis Malware pada penelitian ini digunakan Support Vector Machine (SVM). Jenis SVM yang akan digunakan adalah class SVM one against one menggunakan Kernel RBF. Fitur yang akan dipakai dalam klasifikasi ini adalah Permission dan Broadcast Receiver. Untuk meningkatkan akurasi dari hasil klasifikasi pada penelitian ini digunakan metode Seleksi Fitur. Seleksi Fitur yang digunakan ialah Correlation-based Feature  Selection (CSF), Gain Ratio (GR) dan Chi-Square (CHI). Hasil dari Seleksi Fitur akan di evaluasi bersama dengan hasil yang tidak menggunakan Seleksi Fitur. Akurasi klasifikasi Seleksi Fitur CFS menghasilkan akurasi sebesar 90.83% , GR dan CHI sebesar 91.25% dan data yang tidak menggunakan Seleksi Fitur sebesar 91.67%. Hasil dari pengujian menunjukan bahwa Permission dan Broadcast Receiver bisa digunakan dalam mengklasifikasi jenis Malware, akan tetapi metode Seleksi Fitur yang digunakan mempunyai akurasi yang berada sedikit dibawah data yang tidak menggunakan Seleksi Fitur. Kata kunci: klasifikasi malware android, seleksi fitur, SVM dan multi class SVM one agains one  Abstract Android Malware has growth significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each types of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM). The SVM type wiil be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used are Correlation-based Feature Selection (CFS), Gain Ratio (GR) and Chi-Square (CHI). Result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicate that permission and broadcast receiver can be used in classyfing type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection. Keywords: Classification Android Malware, Feature Selection, SVM and Multi Class SVM one against one



Author(s):  
MINGXIA LIU ◽  
DAOQIANG ZHANG

As thousands of features are available in many pattern recognition and machine learning applications, feature selection remains an important task to find the most compact representation of the original data. In the literature, although a number of feature selection methods have been developed, most of them focus on optimizing specific objective functions. In this paper, we first propose a general graph-preserving feature selection framework where graphs to be preserved vary in specific definitions, and show that a number of existing filter-type feature selection algorithms can be unified within this framework. Then, based on the proposed framework, a new filter-type feature selection method called sparsity score (SS) is proposed. This method aims to preserve the structure of a pre-defined l1 graph that is proven robust to data noise. Here, the modified sparse representation based on an l1-norm minimization problem is used to determine the graph adjacency structure and corresponding affinity weight matrix simultaneously. Furthermore, a variant of SS called supervised SS (SuSS) is also proposed, where the l1 graph to be preserved is constructed by using only data points from the same class. Experimental results of clustering and classification tasks on a series of benchmark data sets show that the proposed methods can achieve better performance than conventional filter-type feature selection methods.



Sign in / Sign up

Export Citation Format

Share Document