scholarly journals A Partition Spatial Filtering Method for Acoustic Array Configuration

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhihong Liu ◽  
Xilong Zhang ◽  
Zunmin Liu ◽  
Chuijie Yi ◽  
Ming Ma

Acoustic array is a ubiquitous tool for locating and quantifying sound sources. However, its effectiveness depends greatly on the array configuration. This paper presents an array configuration method to enhance array performance, especially on the spatial resolution and the Doppler effect correction. The problem of array configuration is formulated into a position matrix determined by introducing partition spatial filtering. Irregular coaxial ring grid spacings and partition filtering conditions are suggested to control array spatial resolution. Geometrical parameters and performance indicators are constructed to quantify the relationships between the array configuration and performance. Based on these quantitative relations, the spatial variation of the array beam pattern and the Doppler effect has got adaptive adjustment. In particular, an adaptive partition algorithm is proposed to reduce computation time. The performance of the method is examined numerically and experimentally, which is compared with the other methods. The results provide the method to guide the design of a 64-microphone optimized array with high performance (1.8° spatial angle resolution and 40% Doppler frequency correction over the bandwidth from 800 Hz to 3000 Hz) and fast computing speed (18 s array generated time for 2000 arrays). Furthermore, an unusual feature of the method is that it can be utilized in the case when the source moves at a nonconstant velocity.

1998 ◽  
Vol 13 (01) ◽  
pp. 1-6 ◽  
Author(s):  
BRUNO BERTOTTI

The increase in the accuracy of Doppler measurements in space requires a rigorous definition of the observed quantity when the propagation occurs in a moving, and possibly dispersive medium, like the solar wind. This is usually done in two divergent ways: in the phase viewpoint it is the time derivative of the correction to the optical path; in the ray viewpoint the signal is obtained form the deflection produced in the ray. They can be reconciled by using the time derivative of the optical path in the Lagrangian sense, i.e. differentiating from ray to ray. To rigorously derive this result an understanding, through relativistic Hamiltonian theory, of the delicate interplay between rays and phase is required; a general perturbation theorem which generalizes the concept of the Doppler effect as a Lagrangian derivative is proved. Relativistic retardation corrections O(v) are obtained, well within the expected sensitivity of Doppler experiments near solar conjunction.


1976 ◽  
Vol 11 (1) ◽  
pp. 5-6
Author(s):  
Charles W Fox ◽  
E M Wray

2014 ◽  
pp. 86-126
Author(s):  
John B. Hearnshaw

Sign in / Sign up

Export Citation Format

Share Document