scholarly journals The Inhibitory Effects of Ficin on Streptococcus mutans Biofilm Formation

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Sun ◽  
Wentao Jiang ◽  
Mingzheng Zhang ◽  
Lingjun Zhang ◽  
Yan Shen ◽  
...  

To investigate the effects of ficin on biofilm formation of conditionally cariogenic Streptococcus mutans (S. mutans). Biomass and metabolic activity of biofilm were assessed using crystal violet assay, colony-forming unit (CFU) counting, and MTT assay. Extracellular polysaccharide (EPS) synthesis was displayed by SEM imaging, bacteria/EPS staining, and anthrone method while acid production was revealed by lactic acid assay. Growth curve and live/dead bacterial staining were conducted to monitor bacterial growth state in both planktonic and biofilm form. Total protein and extracellular proteins of S. mutans biofilm were analyzed by protein/bacterial staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), severally. qRT-PCR was conducted to detect acid production, acid tolerance, and biofilm formation associated genes. Crystal violet assay, CFU counting, and MTT assay showed that the suppression effect of ficin on S. mutans biofilm formation was concentration dependent. 4 mg/mL ficin had significant inhibitory effect on S. mutans biofilm formation including biomass, metabolic activity, EPS synthesis, and lactic acid production ( p < 0.05 ). The growth curves from 0 mg/mL to 4 mg/mL ficin were aligned with each other. There was no significant difference among different ficin groups in terms of live/dead bacterial staining result ( p > 0.05 ). Protein/bacterial staining outcome indicated that ficin inhibit both total protein and biofilm formation during the biofilm development. There were more relatively small molecular weight protein bands in extracellular proteins of 4 mg/mL ficin group when compared with the control. Generally, ficin could inhibit biofilm formation and reduce cariogenic virulence of S. mutans effectively in vitro; thus, it could be a potential anticaries agent.

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yan Sun ◽  
Yihuai Pan ◽  
Yu Sun ◽  
Mingyun Li ◽  
Shengbin Huang ◽  
...  

The present study aimed at investigating the influence of norspermidine on the formation of dual-species biofilms composed of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S. sanguinis). Crystal violet assay was conducted to assess the formation of single-species biofilms of S. mutans and S. sanguinis, and the growth curve was carefully observed to monitor the growth of these two species of bacteria. Fluorescence in situ hybridization (FISH) and MTT array were used to analyze the composition and metabolic activity of the dual-species biofilms, respectively. Extracellular polysaccharides (EPS)/bacteria staining, anthrone method, and scanning electron microscopy (SEM) imaging were conducted to study the synthesis of EPS by dual-species biofilms. Lactic acid assay and pH were measured to detect dual-species biofilm acid production. We found that norspermidine had different effects on S. mutans and S. sanguinis including their growth and biofilm formation. Norspermidine regulated the composition of the dual-species biofilms, decreased the ratio of S. mutans in dual-species biofilms, and reduced the metabolic activity, EPS synthesis, and acid production of dual-species biofilms. Norspermidine regulated dual-species biofilms in an ecological way, suggesting that it may be a potent reagent for controlling dental biofilms and managing dental caries.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jorge Jesús Veloz ◽  
Marysol Alvear ◽  
Luis A. Salazar

Several biological activities have been reported for the Chilean propolis, among their antimicrobial and antibiofilm properties, due to its high polyphenol content. In this study, we evaluate alternative methods to assess the effect of Chilean propolis on biofilm formation and metabolic activity of Streptococcus mutans (S. mutans), a major cariogenic agent in oral cavity. Biofilm formation was studied by using crystal violet and by confocal microscopy. The metabolic activity of biofilm was evaluated by MTT and by flow cytometry analysis. The results show that propolis reduces biofilm formation and biofilm metabolic activity in S. mutans. When the variability of the methods to measure biofilm formation was compared, the coefficient of variation (CV) fluctuated between 12.8 and 23.1% when using crystal violet methodology. On the other hand, the CV ranged between 2.2 and 3.3% with confocal microscopy analysis. The CV for biofilm’s metabolic activity measured by MTT methodology ranged between 5.0 and 11.6%, in comparison with 1.9 to 3.2% when flow cytometry analysis was used. Besides, it is possible to conclude that the methods based on colored compounds presented lower precision to study the effect of propolis on biofilm properties. Therefore, we recommend the use of flow cytometry and confocal microscopy in S. mutans biofilm analysis.


2017 ◽  
Vol 41 (4) ◽  
pp. 294-299 ◽  
Author(s):  
Roger P Dotsey ◽  
Elizabeth A S Moser ◽  
George J Eckert ◽  
Richard L Gregory

Objective: To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Study Design: Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. Results: The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. Conclusions: HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sanjay Kumar Tiwari ◽  
Suping Wang ◽  
Yannan Huang ◽  
Xuedong Zhou ◽  
Hockin H. K. Xu ◽  
...  

Quaternary ammonium methacrylates (QAMs) are useful antimicrobial compounds against oral bacteria. Here, we investigated the effects of two QAMs, dimethylaminododecyl methacrylate (DMADDM) and dimethylaminohexadecyl methacrylate (DMAHDM), on biofilm formation, survival and development of tolerance by biofilm, and survival and development of tolerance against QAMs after prolonged starvation. Enterococcus faecalis (E. faecalis), Streptococcus gordonii (S. gordonii), Lactobacillus acidophilus (L. acidophilus), and Actinomyces naeslundii (A. naeslundii) were used. Minimum inhibitory concentration (MIC) of QAMs against multispecies biofilm was determined. Biofilm formed under sub-MIC was observed by crystal violet staining and confocal laser scanning microscopy (CLSM). Metabolic activity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactic acid production measurement. Development of tolerance was determined by MIC values before and after exposure to QAMs or after prolonged starvation. It was found that E. faecalis and S. gordonii could survive and form biofilm under sub-MIC of QAMs. Lactic acid production from biofilms formed under sub-MIC was significantly higher than control specimens ( p < 0.05 ). The exposure to sub-MIC of QAMs promoted biofilm formation, and prolonged starvation or prolonged contact with sub-MIC helped bacteria develop tolerance against killing by QAMs.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Laura Judith Marcos-Zambrano ◽  
Mireia Puig-Asensio ◽  
Felipe Pérez-García ◽  
Pilar Escribano ◽  
Carlos Sánchez-Carrillo ◽  
...  

ABSTRACT The objectives of our study were to describe the characteristics of patients with Candida guilliermondii candidemia and to perform an in-depth microbiological characterization of isolates and compare them with those of patients with C. albicans candidemia. We described the risk factors and outcomes of 22 patients with candidemia caused by the C. guilliermondii complex. Incident isolates were identified using molecular techniques, and susceptibility to fluconazole, anidulafungin, and micafungin was studied. Biofilm formation was measured using the crystal violet assay (biomass production) and the XTT reduction assay (metabolic activity), and virulence was studied using the Galleria mellonella model. Biofilm formation was compared with that observed for C. albicans. The main conditions predisposing to infection were malignancy (68%), immunosuppressive therapy (59%), and neutropenia (18%). Clinical presentation of candidemia was less severe in patients infected by the C. guilliermondii complex than in patients infected by C. albicans, and 30-day mortality was lower in C. guilliermondii patients (13.6% versus 33.9%, respectively; P = 0.049). Isolates were identified as C. guilliermondii sensu stricto (n = 17) and Candida fermentati (n = 5). The isolates produced biofilms with low metabolic activity and moderate biomass. The G. mellonella model showed that C. guilliermondii was less virulent than C. albicans (mean of 6 days versus 1 day of survival, respectively; P < 0.001). Patients with candidemia caused by the C. guilliermondii complex had severe and debilitating underlying conditions. Overall, the isolates showed diminished susceptibility to fluconazole and echinocandins, although poor biofilm formation and the low virulence were associated with a favorable outcome.


2020 ◽  
Vol 58 (7) ◽  
pp. 887-895 ◽  
Author(s):  
Judith Díaz-García ◽  
Maiken C Arendrup ◽  
Rafael Cantón ◽  
Julio García-Rodríguez ◽  
Ana Gómez ◽  
...  

Abstract The capacity of Candida spp. to form biofilms allows them to attach either to living or inert surfaces, promoting their persistence in hospital environments. In a previous study, we reported strain-to-strain variations in Candida spp. biofilm development, suggesting that some genotypes may be greater biofilm formers than others. In this study, we hypothesize that isolates pertaining to clusters may be found more frequently in the environment due to their ability to form biofilms compared to singleton genotypes. Two hundred and thirty-nine Candida spp. isolates (78 clusters) from candidemia patients admitted to 16 hospitals located in different cities and countries—and the same number of singleton genotypes used as controls—were tested in terms of biofilm formation using the crystal violet and the XTT reduction assays. Candida albicans clusters showed higher biofilm formation in comparison to singleton genotypes (P &lt; .01). The biofilms formed by intra-hospital C. albicans clusters showed higher metabolic activity (P &lt; .05). Furthermore, marked variability was found among species and type of cluster. We observed that the higher the number of isolates, the higher the variability of biofilm production by isolates within the cluster, suggesting that the production of biofilm by isolates of the same genotype is quite diverse and does not depend on the type of cluster studied. In conclusion, candidemia Candida spp. clusters—particularly in the case of C. albicans—show significantly more biomass production and metabolic activity than singleton genotypes.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 215
Author(s):  
Aparna Vijayakumar ◽  
Hema Bhagavathi Sarveswari ◽  
Sahana Vasudevan ◽  
Karthi Shanmugam ◽  
Adline Princy Solomon ◽  
...  

Dental caries, the most common oral disease, is a major public healthcare burden and affects more than three billion people worldwide. The contemporary understanding of the need for a healthy microbiome and the emergence of antimicrobial resistance has resulted in an urgent need to identify compounds that curb the virulence of pathobionts without microbial killing. Through this study, we have demonstrated for the first time that 5,6,7-trihydroxyflavone (Baicalein) significantly downregulates crucial caries-related virulence phenotypes in Streptococcus mutans. Baicalein significantly inhibited biofilm formation by Streptococcus mutans UA159 (MBIC50 = 200 μM), without significant growth inhibition. Notably, these concentrations of baicalein did not affect the commensal S. gordonii. Strikingly, baicalein significantly reduced cell surface hydrophobicity, autoaggregation and acid production by S. mutans. Mechanistic studies (qRT-PCR) showed downregulation of various genes regulating biofilm formation, surface attachment, quorum sensing, acid production and competence. Finally, we demonstrate the potential translational value of baicalein by reporting synergistic interaction with fluoride against S. mutans biofilms.


2020 ◽  
Author(s):  
Jinheng Li ◽  
Tiantian Wu ◽  
Weiwei Peng ◽  
yaqin zhu

Abstract Background: Streptococcus mutans is the principal etiological agent of human dental caries. The major virulence factors of S. mutans are acid production, acid tolerance, extracellular polysaccharide (EPS) synthesis and biofilm formation. The aim of this study is to evaluate the effect of resveratrol, a natural compound, on virulence properties of S. mutans . Results: Resveratrol at sub-MIC levels significantly decreased acid production and acid tolerance, inhibited synthesis of water-soluble polysaccharide and water-insoluble polysaccharide, compromised biofilm formation. Related virulence gene expression ( ldh, relA, gtfC, comDE ) was down-regulated with increasing concentrations of resveratrol. Conclusions : Resveratrol has an inhibitory effect on S. mutans cariogenic virulence properties and it represents a promising anticariogenic agent. Keywords : resveratrol, Streptococcus mutans , acidogenicity, aciduricity, extracellular polysaccharide, biofilm


2020 ◽  
Author(s):  
Yue Qu ◽  
Shoufeng Yang ◽  
Zhangzhang Chen ◽  
Feifei Su

Abstract Background: The ability of the human fungal pathogen Candida albicans to form biofilms, for example on indwelling medical devices, is a major pathogenic mechanism and has been the focus of intense studies in the fungal pathogenesis field. A key research tool used is the quantitative methods for measuring biofilm formation of C. albicans. Objective: We sought to optimize the conventional crystal violet (CV) staining assay for quantification of biofilm formation by C. albicans and evaluate its performance. Methods: Individual modifications included (i) submerge-washing of microplates to remove non-adherent cells, (ii) heat-fixation, (iii) short-term staining for 3 min, (iv) submerge-washing to remove unbound CV dye, and (v) short-term destaining for 15 min were compared with the standard procedure, and those were superior were incorporated. Performance analysis was carried out for the modified CV assay, in comparison to the conventional CV assay and the XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide] reduction assay. Results: The modified CV assay demonstrated several advantages in quantitative assessment of biofilm formation of C. albicans over the conventional CV assay, including greater accuracy and reproducibility, shorter experimental time and reduced labor intensity, and was at least comparable to the XTT reduction assay.Conclusion: The modified CV method can be used as an alternative to the XTT reduction assay in quantification of biofilm growth by C. albicans.


Sign in / Sign up

Export Citation Format

Share Document