scholarly journals Dynamic Mathematical Models’ System and Synchronization

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Malik Bader Alazzam ◽  
Abdulsattar Abdullah Hamad ◽  
Ahmed S AlGhamdi

We created the equilibrium, which includes sickness outcomes, health and risk behaviors, environmental factors, and health-related assets and delivery systems, and it should be incorporated in system Dyc (dynamic) modelling of chronic disease prevention. System Dyc has the ability to model a variety of interconnected illnesses and dangers, as well as the interaction between delivery systems and afflicted people, as well as state and national policies. This paper proposes a unique idea. Hybrid synchronization utilizes four positive LYP (Lyapunov) exponents based on state feedback management with two identical systems of the Lorenz system 6D HYCH system.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Da-Ke Gu ◽  
Da-Wei Zhang ◽  
Yin-Dong Liu

This paper considers the parametric control to the Lorenz system by state feedback. Based on the solutions of the generalized Sylvester matrix equation (GSE), the unified explicit parametric expression of the state feedback gain matrix is proposed. The closed loop of the Lorenz system can be transformed into an arbitrary constant matrix with the desired eigenstructure (eigenvalues and eigenvectors). The freedom provided by the parametric control can be fully used to find a controller to satisfy the robustness criteria. A numerical simulation is developed to illustrate the effectiveness of the proposed approach.


2002 ◽  
Author(s):  
Pei Yu

An explicit general formula is proposed for controlling Hopf bifurcation using state feedback. This method can be used to either delay (or even eliminate) an existing Hopf bifurcation or change a subcritical Hopf bifurcation to supercritical. The Lorenz system is used to illustrate the application of the formula.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


2001 ◽  
Vol 11 (07) ◽  
pp. 1989-1996 ◽  
Author(s):  
JIN MAN JOO ◽  
JIN BAE PARK

This paper presents an approach for the control of the Lorenz system. We first show that the controlled Lorenz system is differentially flat and then compute the flat output of the Lorenz system. A two degree of freedom design approach is proposed such that the generation of full state feasible trajectory incorporates with the design of a tracking controller via the flat output. The stabilization of an equilibrium state and the tracking of a feasible state trajectory are illustrated.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750128 ◽  
Author(s):  
Anda Xiong ◽  
Julien C. Sprott ◽  
Jingxuan Lyu ◽  
Xilu Wang

The famous Lorenz system is studied and analyzed for a particular set of parameters originally proposed by Lorenz. With those parameters, the system has a single globally attracting strange attractor, meaning that almost all initial conditions in its 3D state space approach the attractor as time advances. However, with a slight change in one of the parameters, the chaotic attractor coexists with a symmetric pair of stable equilibrium points, and the resulting tri-stable system has three intertwined basins of attraction. The advent of 3D printers now makes it possible to visualize the topology of such basins of attraction as the results presented here illustrate.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130024
Author(s):  
Weisheng Huang ◽  
Xiao-Song Yang

We demonstrate in this paper a new chaotic behavior in the Lorenz system with periodically excited parameters. We focus on the parameters with which the Lorenz system has only two asymptotically stable equilibrium points, a saddle and no chaotic dynamics. A new mechanism of generating chaos in the periodically excited Lorenz system is demonstrated by showing that some trajectories can visit different attractor basins due to the periodic variations of the attractor basins of the time-varying stable equilibrium points when a parameter of the Lorenz system is varying periodically.


Sign in / Sign up

Export Citation Format

Share Document