scholarly journals Fracability Evaluation Method and Influencing Factors of the Tight Sandstone Reservoir

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jiageng Liu ◽  
Lisha Qu ◽  
Ziyi Song ◽  
Jing Li ◽  
Chen Liu ◽  
...  

Fracability evaluation is the basis of reservoir fracturing and fracturing zone optimization. The tight sandstone reservoir is characterized by low porosity and low permeability, which requires hydraulic fracturing to improve industrial productivity. In this study, a systematic model was proposed for the fracability evaluation of tight sandstone reservoirs. The rock mechanics tests and sonic tests demonstrated that tight sandstone reservoir is characterized by high brittleness, high fracture toughness, and weak development of natural fractures. Numerical simulation was used to analyze the change of reservoir parameters during hydraulic fracturing and the influence of in situ stress on fracture propagation. The results showed that when the horizontal stress anisotropy coefficient is small, natural fractures may lead hydraulic fractures to change direction, and complex fracture networks are easily formed in the reservoir. The horizontal stress anisotropy coefficient ranges from 0.23 to 0.52, and it is easy to produce fracture networks in the reservoir. A new fracability evaluation model was established based on the analytic hierarchy process (AHP). The fracability of tight sandstone reservoir is characterized by the fracability index (FI) and is divided into three levels. Based on the model, this study carried out fracability evaluation and fracturing zone optimization in the study area, and the microseismic monitoring results verified the accuracy of the model.

2015 ◽  
Author(s):  
Mark W. McClure ◽  
Mohsen Babazadeh ◽  
Sogo Shiozawa ◽  
Jian Huang

Abstract We developed a hydraulic fracturing simulator that implicitly couples fluid flow with the stresses induced by fracture deformation in large, complex, three-dimensional discrete fracture networks. The simulator can describe propagation of hydraulic fractures and opening and shear stimulation of natural fractures. Fracture elements can open or slide, depending on their stress state, fluid pressure, and mechanical properties. Fracture sliding occurs in the direction of maximum resolved shear stress. Nonlinear empirical relations are used to relate normal stress, fracture opening, and fracture sliding to fracture aperture and transmissivity. Fluid leakoff is treated with a semianalytical one-dimensional leakoff model that accounts for changing pressure in the fracture over time. Fracture propagation is treated with linear elastic fracture mechanics. Non-Darcy pressure drop in the fractures due to high flow rate is simulated using Forchheimer's equation. A crossing criterion is implemented that predicts whether propagating hydraulic fractures will cross natural fractures or terminate against them, depending on orientation and stress anisotropy. Height containment of propagating hydraulic fractures between bedding layers can be modeled with a vertically heterogeneous stress field or by explicitly imposing hydraulic fracture height containment as a model assumption. The code is efficient enough to perform field-scale simulations of hydraulic fracturing with a discrete fracture network containing thousands of fractures, using only a single compute node. Limitations of the model are that all fractures must be vertical, the mechanical calculations assume a linearly elastic and homogeneous medium, proppant transport is not included, and the locations of potentially forming hydraulic fractures must be specified in advance. Simulations were performed of a single propagating hydraulic fracture with and without leakoff to validate the code against classical analytical solutions. Field-scale simulations were performed of hydraulic fracturing in a densely naturally fractured formation. The simulations demonstrate how interaction with natural fractures in the formation can help explain the high net pressures, relatively short fracture lengths, and broad regions of microseismicity that are often observed in the field during stimulation in low permeability formations, and which are not predicted by classical hydraulic fracturing models. Depending on input parameters, our simulations predicted a variety of stimulation behaviors, from long hydraulic fractures with minimal leakoff into surrounding fractures to broad regions of dense fracturing with a branching network of many natural and newly formed fractures.


2015 ◽  
Author(s):  
Hisanao Ouchi ◽  
Amit Katiyar ◽  
John T. Foster ◽  
Mukul M. Sharma

Abstract A novel fully coupled hydraulic fracturing model based on a nonlocal continuum theory of peridynamics is presented and applied to the fracture propagation problem. It is shown that this modeling approach provides an alternative to finite element and finite volume methods for solving poroelastic and fracture propagation problems and offers some clear advantages. In this paper we specifically investigate the interaction between a hydraulic fracture and natural fractures. Current hydraulic fracturing models remain limited in their ability to simulate the formation of non-planar, complex fracture networks. The peridynamics model presented here overcomes most of the limitations of existing models and provides a novel approach to simulate and understand the interaction between hydraulic fractures and natural fractures. The model predictions in two-dimensions have been validated by reproducing published experimental results where the interaction between a hydraulic fracture and a natural fracture is controlled by the principal stress contrast and the approach angle. A detailed parametric study involving poroelasticity and mechanical properties of the rock is performed to understand why a hydraulic fracture gets arrested or crosses a natural fracture. This analysis reveals that the poroelasticity, resulting from high fracture fluid leak-off, has a dominant influence on the interaction between a hydraulic fracture and a natural fracture. In addition, the fracture toughness of the rock, the toughness of the natural fracture, and the shear strength of the natural fracture also affect the interaction between a hydraulic fracture and a natural fracture. Finally, we investigate the interaction of multiple completing fractures with natural fractures in two-dimensions and demonstrate the applicability of the approach to simulate complex fracture networks on a field scale.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1302-1320 ◽  
Author(s):  
Mark W. McClure ◽  
Mohsen Babazadeh ◽  
Sogo Shiozawa ◽  
Jian Huang

Summary We developed a hydraulic-fracturing simulator that implicitly couples fluid flow with the stresses induced by fracture deformation in large, complex, 3D discrete-fracture networks (DFNs). The code is efficient enough to perform field-scale simulations of hydraulic fracturing in DFNs containing thousands of fractures, without relying on distributed-memory parallelization. The simulator can describe propagation of hydraulic fractures and opening and shear stimulation of natural fractures. Fracture elements can open or slide, depending on their stress state, fluid pressure, and mechanical properties. Fracture sliding occurs in the direction of maximum resolved shear stress. Nonlinear empirical equations are used to relate normal stress, fracture opening, and fracture sliding to fracture aperture and transmissivity. Fluid leakoff is treated with a semianalytical 1D leakoff model that accounts for changing pressure in the fracture over time. Fracture propagation is modeled with linear-elastic fracture mechanics. The Forchheimer equation (Forchheimer 1901) is used to simulate non-Darcy pressure drop in the fractures because of high flow rate. A crossing criterion is implemented that predicts whether propagating hydraulic fractures will cross natural fractures or terminate against them, depending on orientation and stress anisotropy. Height containment of propagating hydraulic fractures between bedding layers can be modeled with a vertically heterogeneous stress field or by explicitly imposing hydraulic-fracture-height containment as a model assumption. Limitations of the model are that all fractures must be vertical; the mechanical calculations assume a linearly elastic and homogeneous medium; proppant transport is not included; and the locations of potentially forming hydraulic fractures must be specified in advance. Simulations were performed of a single propagating hydraulic fracture with and without leakoff to validate the code against classical analytical solutions. Field-scale simulations were performed of hydraulic fracturing in a densely naturally fractured formation. The simulations demonstrate how interaction with natural fractures in the formation can help explain the high net pressures, relatively short fracture lengths, and broad regions of microseismicity that are often observed in the field during stimulation in low-permeability formations, and that are not predicted by classical hydraulic-fracturing models. Depending on input parameters, our simulations predicted a variety of stimulation behaviors, from long hydraulic fractures with minimal leakoff into surrounding fractures to broad regions of dense fracturing with a branching network of many natural and newly formed fractures.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Gang Hui ◽  
Shengnan Chen ◽  
Youjing Wang ◽  
Fei Gu

An integrated hydraulic fracturing followed by waterflooding was conducted in a heterogeneous sandstone formation in the Northern Shanxi Slop of Ordos Basin in Western China. Water breakthrough quickly occurred, and the underlying mechanism of water breakthrough has not been well understood. Such mechanism needs to be investigated comprehensively from the spatial connectivity of multilayer sand bodies and characterization of hydraulic-natural fracture networks. Here, an integrated approach is proposed to tap the remaining oil in the individual sand layer during the late-stage development of tight sandstone reservoirs. A case study is utilized to demonstrate the applicability of the integrated method. It is found that the six sand layers could be further divided within the target oil layers. These sand layers have a variety of physical and mechanical properties, leading to the asymmetric spatial distribution of hydraulic fractures after performing the integrated fracturing of whole oil layers. The spatial difference of sand bodies conforms to the features of the multiperiod superimposed channel in the sedimentary environment of fan delta front. The natural fractures were generated from the tectonic movement in the Mesozoic period with a dominant orientation of approximately NE 67°. The asymmetric hydraulic fractures propagated and connected with the preexisting natural fractures, forming the intricate natural-hydraulic fracture networks. The water breakthrough pattern in each sand layer is primarily ascribed to the spatial distribution of the hydraulic-natural fracture networks and sedimentary microfacies. The refracturing operations based on the remaining oil distribution in sand layers are proven to be effective in further developing the formation. The average oil production of related wells increased from 0.61 t/d to 2.18 t/d. This practical development strategy provides insights for further development of likewise heterogeneous tight sandstone reservoirs.


2013 ◽  
Vol 1 (2) ◽  
pp. SB27-SB36 ◽  
Author(s):  
Kui Zhang ◽  
Yanxia Guo ◽  
Bo Zhang ◽  
Amanda M. Trumbo ◽  
Kurt J. Marfurt

Many tight sandstone, limestone, and shale reservoirs require hydraulic fracturing to provide pathways that allow hydrocarbons to reach the well bore. Most of these tight reservoirs are now produced using multiple stages of fracturing through horizontal wells drilled perpendicular to the present-day azimuth of maximum horizontal stress. In a homogeneous media, the induced fractures are thought to propagate perpendicularly to the well, parallel to the azimuth of maximum horizontal stress, thereby efficiently fracturing the rock and draining the reservoir. We evaluated what may be the first anisotropic analysis of a Barnett shale-gas reservoir after extensive hydraulic fracturing and focus on mapping the orientation and intensity of induced fractures and any preexisting factures, with the objective being the identification of reservoir compartmentalization and bypassed pay. The Barnett Shale we studied has near-zero permeability and few if any open natural fractures. We therefore hypothesized that anisotropy is therefore due to the regional northeast–southwest maximum horizontal stress and subsequent hydraulic fracturing. We found the anisotropy to be highly compartmentalized, with the compartment edges being defined by ridges and domes delineated by the most positive principal curvature [Formula: see text]. Microseismic work by others in the same survey indicates that these ridges contain healed natural fractures that form fracture barriers. Mapping such heterogeneous anisotropy field could be critical in planning the location and direction of any future horizontal wells to restimulate the reservoir as production drops.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
kai lin ◽  
Bo Zhang ◽  
Jianjun Zhang ◽  
Huijing Fang ◽  
Kefeng Xi ◽  
...  

The azimuth of fractures and in-situ horizontal stress are important factors in planning horizontal wells and hydraulic fracturing for unconventional resources plays. The azimuth of natural fractures can be directly obtained by analyzing image logs. The azimuth of the maximum horizontal stress σH can be predicted by analyzing the induced fractures on image logs. The clustering of micro-seismic events can also be used to predict the azimuth of in-situ maximum horizontal stress. However, the azimuth of natural fractures and the in-situ maximum horizontal stress obtained from both image logs and micro-seismic events are limited to the wellbore locations. Wide azimuth seismic data provides an alternative way to predict the azimuth of natural fractures and maximum in-situ horizontal stress if the seismic attributes are properly calibrated with interpretations from well logs and microseismic data. To predict the azimuth of natural fractures and in-situ maximum horizontal stress, we focus our analysis on correlating the seismic attributes computed from pre-stack and post-stack seismic data with the interpreted azimuth obtained from image logs and microseismic data. The application indicates that the strike of the most positive principal curvature k1 can be used as an indicator for the azimuth of natural fractures within our study area. The azimuthal anisotropy of the dominant frequency component if offset vector title (OVT) seismic data can be used to predict the azimuth of maximum in-situ horizontal stress within our study area that is located the southern region of the Sichuan Basin, China. The predicted azimuths provide important information for the following well planning and hydraulic fracturing.


2019 ◽  
Vol 59 (1) ◽  
pp. 244
Author(s):  
Raymond Johnson Jr ◽  
Ruizhi Zhong ◽  
Lan Nguyen

Tight gas stimulations in the Cooper Basin have been challenged by strike–slip to reverse stress regimes, adversely affecting the hydraulic fracturing treatment. These stress conditions increase borehole breakout and affect log and cement quality, create more tortuous pathways and near-wellbore pressure loss, and reduce fracture containment. These factors result in stimulation of lower permeability, low modulus intervals (e.g. carbonaceous shales and interbedded coals) versus targeted tight gas sands. In the Windorah Trough of the Cooper Basin, several steps have been employed in an ongoing experiment to improve hydraulic fracturing results. First, the wellbore was deviated in the maximum horizontal stress direction and perforations shot 0 to 180° phased to better align the resulting hydraulic fractures. Next, existing drilling and logging-while-drilling data were used to train a machine learning model to improve reservoir characterisation in sections with missing or poor log data. Finally, diagnostic fracture injection tests in non-pay and pay sections were targeted to specifically inform the machine learning model and better constrain permeability and stress profiles. It is envisaged that the improved well and perforation alignment and better targeting of intervals for the fracturing treatment will result in lowered tortuosity, better fracture containment, and higher concentrations of localised proppant, thereby improving conductivity and targeting of desired intervals. The authors report the process and results of their experimentation, and the results relative to the offsetting vertical well where a typical five-stage treatment was employed.


Sign in / Sign up

Export Citation Format

Share Document