scholarly journals Continuum Damage Mechanics Approach for Modeling Cumulative-Damage Model

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Haoran Li ◽  
Jiadong Wang ◽  
Juncheng Wang ◽  
Ming Hu ◽  
Yan Peng

In this study, we propose a novel cumulative-damage model based on continuum damage mechanics under situations where the mechanical components are subjected to variable loading. The equivalent completely reversed stress amplitude accounting for the effect of mean stress, stress gradients, loading history, and additional hardening behavior related to nonproportional loading paths on high-cycle fatigue under variable loading is elaborated. The effect of mean stress, stress gradients, loading history, and additional hardening behavior related to nonproportional loading paths is considered by averaging the superior limit of the intrinsic damage dissipation work in the critical domain. We developed a novel cumulative-damage model by introducing the equivalent completely reversed stress amplitude into the damage-evolution model. For better comparison, existing cumulative-damage models, including the Palmgren–Miner law, corrected Palmgren–Miner law, Morrow’s plastic work interaction rule, and Wang’s rule, were employed to predict the fatigue life under variable loading. The proposed model performed better, considering the error scatter band obtained by plotting the predicted and experimental fatigue life on the same coordinate system. The model precisely predicts fatigue life under variable loading and easily identifies its material constants.

Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


2016 ◽  
Vol 26 (1) ◽  
pp. 162-188 ◽  
Author(s):  
Ying Sun ◽  
George Z Voyiadjis ◽  
Weiping Hu ◽  
Fei Shen ◽  
Qingchun Meng

Fatigue and fretting fatigue are the main failure mode in bolted joints when subjected to cyclic load. Based on continuum damage mechanics, an elastic–plastic fatigue damage model and a fretting fatigue damage model are combined to evaluate the fatigue property of bolted joints to cover the two different failure modes arisen at two possible critical sites. The predicted fatigue lives agree well with the experimental results available in the literature. The beneficial effects of clamping force on fatigue life improvement of the bolted joint are revealed: part of the load is transmitted by friction force in the contact interface, and the stress amplitude at the critical position is decreased due to the reduction in the force transmitted by the bolt. The negative effect of fretting damage on the bolted joint is also captured in the simulation.


2018 ◽  
Vol 165 ◽  
pp. 14011
Author(s):  
Xiaojia Wang ◽  
Weiping Hu ◽  
Qingchun Meng

A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.


2017 ◽  
Vol 21 (9) ◽  
pp. 1402-1408
Author(s):  
Huili Wang ◽  
Sifeng Qin ◽  
Yunjie Wang

Fatigue is a damage accumulation process in which material property deteriorates continuously. Fatigue life prediction issues are important for safety. This article aims to develop a nonlinear cumulative damage model. A fatigue damage model based on the continuum damage mechanics is addressed and applied to bridge fatigue life evaluation. First, the bridge nonlinear cumulative damage model based on damage mechanics is propounded and equivalent effective stress range is given. Then, the effects of the main parameter in the model are analyzed. Finally, Xinghai Bay Bridge is taken as a case study. The results indicate that the damage is increased with the material parameter [Formula: see text] reduced. [Formula: see text] is a material parameter depending on stress amplitude and without physical meaning. If [Formula: see text], the effect of [Formula: see text] is negligible. If [Formula: see text], nonlinear cumulative damage model degrades into Miner’s rule and effect of [Formula: see text] to structural damage is maximum. The cumulative damage curve calculated by the nonlinear cumulative damage model is nonlinear, with a low cumulative rate initially but a very high cumulative rate at the end of the design life, whereas the Miner’s rule is linear. The nonlinear cumulative damage model can reflect actual damage process, while Miner’s rule is pessimistic.


2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


Sign in / Sign up

Export Citation Format

Share Document