scholarly journals Security Analysis of Image Scrambling Cipher Based on Compound Chaotic Equation

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Luoyin Feng

As digital image has become one of the most important forms of expression in multimedia information, the security of digital image has become a concern. Because of its large amount of data and high redundancy, there are many security hidden dangers in ordinary image encryption methods. Aiming at the problems of low flexibility and poor anti-interference of traditional image scrambling technology, this paper proposes to select the scrambling diffusion encryption structure in the process of chaotic digital image encryption, which can produce relatively better encryption performance than single scrambling and diffusion scrambling. The composite chaotic operation used in this paper masks the distribution characteristics of chaotic subsequences. Based on the composite chaotic mapping model, the image scrambling password under the two-dimensional chaotic equation is established by scrambling the image in space and frequency domain. Several rounds of experiments show that the algorithm has a large scrambling scheme, further expands the key space of Arnold algorithm, and effectively resists the common computer brute force attack cracking and image decryption cracking methods such as exhaustive, differential attack and known plaintext attack. The improved encryption algorithm can realize the key avalanche effect, is very sensitive to the initial key and has high key security performance, and solves the security problem in the process of image transmission. Several performance syntheses show that the algorithm has high security performance and is suitable for image encryption scheme.

In This paper, new model of image encryption is designed. This model using stream cipher based on finite precision chaotic maps. The model designed in efficient way by using Xilinx System Generator (XSG). Pseudo Random Bit Generator (PRBG) depends on chaotic maps is proposed to design Fixed Point Hybrid Chaotic Map-PRBG (FPHYBCM-PRBG). National Institute of Standards and Technology (NIST) randomness measures tested the randomness of the proposed FPHYBCM-PRBG system. The security analysis, such as histogram, correlation coefficient, information entropy, differential attack (NPCR and UACI) are used to analyze the proposed system. Also, FPGA Hardware Co-Simulation over Xilinx SP605 XC6SLX45T provided to test the reality of image encryption system. The results show that FPHYBCM-PRBG is suitable for image encryption based on stream cipher and outperform some encryption algorithms in sufficient way to enhance the security and robust against brute force attack with low maximum frequency and throughput.


Author(s):  
Behrang Chaboki ◽  
Ali Shakiba

In this paper, we build a novel chaotic coupled lattice mapping with positive Lyapunov exponent, and introduce a novel chaotic image scrambling mechanism. Then, we propose a chaotic image encryption algorithm which uses the introduced chaotic coupled lattice mapping to apply permutation by iteratively applying the introduced chaotic image scrambling mechanism, and diffusing the pixel values. We use a sorting approach rather than quantizing the chaotic floating-point values to construct the diffusion matrix. We also study the security of the proposed algorithm concerning several security measures including brute-force attack, differential attack, key sensitivity, and statistical attacks. Moreover, the proposed algorithm is robust against data loss and noise attacks.


Author(s):  
Zubair Jeelani

Cellular automata are dynamical systems, discrete in terms of both space and time. Many cellular automata are capable of generating chaos and are well suited for applications like digital image encryption and scrambling. Various cellular automata-based digital image scrambling techniques have been proposed in literature. An adversary may have access to a set of images from which the particular image is scrambled. The problem with these techniques in this particular case is that an adversary may be able to find out the true content of the scrambled image just by comparing its histogram with the histograms of a suspected set of images. In this paper, a secure digital image encryption technique based on outer totalistic cellular automata is proposed that modifies the histogram of the scrambled image so that it is difficult to guess the true content carried in the digital image.


2015 ◽  
Vol 719-720 ◽  
pp. 1030-1037
Author(s):  
Tao Song

In recent years, chaos-based image encryption technologies have been widely studied to meet the increasing demand for real-time secure image transmission applications. To overcome the drawbacks of small key space and weak security in many existing schemes based on low-dimensional chaotic maps, this paper suggests a security improved scheme with a permutation-diffusion architecture. In the permutation stage, baker map is employed to shuffle the pixel positions. In the diffusion stage, the value of each pixel is altered by using a key stream derived from hyperchaotic system. Compared with ordinary chaotic systems, hyperchaotic systems, with more complex dynamical behaviors and number of system variables, offer greater potential for secure cryptosystem construction. Extensive security analysis has been performed on the proposed scheme, including the most important ones like key space analysis, statistical analysis and key sensitivity, which has demonstrated the satisfactory security of the proposed scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Khaled Loukhaoukha ◽  
Jean-Yves Chouinard ◽  
Abdellah Berdai

In the past few years, several encryption algorithms based on chaotic systems have been proposed as means to protect digital images against cryptographic attacks. These encryption algorithms typically use relatively small key spaces and thus offer limited security, especially if they are one-dimensional. In this paper, we proposed a novel image encryption algorithm based on Rubik's cube principle. The original image is scrambled using the principle of Rubik's cube. Then, XOR operator is applied to rows and columns of the scrambled image using two secret keys. Finally, the experimental results and security analysis show that the proposed image encryption scheme not only can achieve good encryption and perfect hiding ability but also can resist exhaustive attack, statistical attack, and differential attack.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Amal Hafsa ◽  
Mohamed Gafsi ◽  
Jihene Malek ◽  
Mohsen Machhout

Securing medical images is a great challenge to protect medical privacy. An image encryption model founded on a complex chaos-based Pseudorandom Number Generator (PRNG) and Modified Advanced Encryption Standard (MAES) is put forward in this paper. Our work consists of the following three main points. First, we propose the use of a complex PRNG based on two different chaotic systems which are the 2D Logistic map in a complex set and Henon’s system in the key generation procedure. Second, in the MAES 128 bits, the subbytes’ operation is performed using four different S-boxes for more complexity. Third, both shift-rows’ and mix-columns’ transformations are eliminated and replaced with a random permutation method which increases the complexity. More importantly, only four rounds of encryption are performed in a loop that reduces significantly the execution time. The overall system is implemented on the Altera Cyclone III board, which is completed with an SD card interface for medical image storage and a VGA interface for image display. The HPS software runs on μClinux and is used to control the FPGA encryption-decryption algorithm and image transmission. Experimental findings prove that the propounded map used has a keyspace sufficiently large and the proposed image encryption algorithm augments the entropy of the ciphered image compared to the AES standard and reduces the complexity time by 97%. The power consumption of the system is 136.87 mw and the throughput is 1.34 Gbit/s. The proposed technique is compared to recent image cryptosystems including hardware performances and different security analysis properties, such as randomness, sensitivity, and correlation of the encrypted images and results prove that our cryptographic algorithm is faster, more efficient, and can resist any kind of attacks.


Author(s):  
Ali A. Yassin ◽  
Abdullah Mohammed Rashid ◽  
Abdulla J. Yassin ◽  
Hamid Alasadi

Recently, the concept of DNA has been invested in computing technology in different ways which linking information technology and biological sciences. There are several encryption algorithms based on DNA encoding that has been proposed, which leads to generating a new direction in image encryption. However, the DNA encryption scheme has drawbacks such as expensive experimental equipment, difficult operations, and hard to hold its biotechnology. Additionally, during careful cryptanalysis that applied to most of these image encryption schemes, we notice that DNA operators can only influence one DNA base, which causes poor diffusion. Our proposed scheme is not applied complex biological operation but just is given to improve the diffusion ability of image encryption scheme by using DNA sequence and DCT transform. Our works overcome above-aforementioned issues. Furthermore, empirical results on real images and security analysis demonstrate that our proposed scheme not only has flexibility and efficiency encryption scheme but also has the ability to resist well-known attacks such as entropy attack, differential attack, statistical attack, chosen/known plain image attack. Additionally, our work enjoys several strong characteristics as follows: (1) the decryption error is very low to recover the original image; (2) Once key for each encryption process and if the user wants to use the same key in many times, our proposed scheme supports secret key sensitivity; (3) the value of correlation of the encrypted image is null; (4) the scrambling process is good and generate high disorder at the output. As a result, our proposed scheme achieves a good balance between strong security and high performance.


2019 ◽  
Vol 13 ◽  
pp. 174830261985347 ◽  
Author(s):  
Zhijuan Deng ◽  
Shaojun Zhong

In this article, we introduced a digital image encryption algorithm based on the chaotic mapping designed by Xiong et al. In their paper, the authors theoretically analyzed the algorithm and pointed out that the algorithm did not need to have the prior knowledge of the orbital distribution and one can select any chaotic model. In this way, the algorithm greatly expanded the cryptographic space and greatly reduced the number of iterations of the mapping. Since the algorithm has many characteristics, for instance, it is sensitive to the secret key, its key space is big, the pixel is well distributed after being encrypted, etc., the security of the encrypted images can be assured effectively. However, since the algorithm applied the image scrambling for encryption, and did not take the chosen-plaintext attacks into consideration, the algorithm is relatively weak in resisting the chosen-plaintext attacks. Therefore, we put forward a kind of image replacement method based on chaos, which can resist the chosen-plaintext attacks. And the experimental simulation proves that this algorithm not only has many characteristics, for instance, it is sensitive to the secret key, its key space is big, the pixel is well distributed after being encrypted, etc., but also can resist the chosen-plaintext attacks effectively. In the meanwhile, the algorithm is very sensitive to the small changes of the plaintexts, and its encrypted images will completely lose the features of the original ones.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Adrian-Viorel Diaconu ◽  
Khaled Loukhaoukha

A recently proposed secure image encryption scheme has drawn attention to the limited security offered by chaos-based image encryption schemes (mainly due to their relatively small key space) proposing a highly robust approach, based on Rubik's cube principle. This paper aims to study a newly designed image cryptosystem that uses the Rubik's cube principle in conjunction with a digital chaotic cipher. Thus, the original image is shuffled on Rubik's cube principle (due to its proven confusion properties), and then XOR operator is applied to rows and columns of the scrambled image using a chaos-based cipher (due to its proven diffusion properties). Finally, the experimental results and security analysis show that the newly proposed image encryption scheme not only can achieve good encryption and perfect hiding ability but also can resist any cryptanalytic attacks (e.g., exhaustive attack, differential attack, statistical attack, etc.).


Sign in / Sign up

Export Citation Format

Share Document