scholarly journals An Image Enhancement Algorithm Based on Fractional-Order Phase Stretch Transform and Relative Total Variation

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Wang ◽  
Ying Jia ◽  
Qiming Wang ◽  
Pengfei Xu

The main purpose of image enhancement technology is to improve the quality of the image to better assist those activities of daily life that are widely dependent on it like healthcare, industries, education, and surveillance. Due to the influence of complex environments, there are risks of insufficient detail and low contrast in some images. Existing enhancement algorithms are prone to overexposure and improper detail processing. This paper attempts to improve the treatment effect of Phase Stretch Transform (PST) on the information of low and medium frequencies. For this purpose, an image enhancement algorithm on the basis of fractional-order PST and relative total variation (FOPSTRTV) is developed to address the task. In this algorithm, the noise in the original image is removed by low-pass filtering, the edges of images are extracted by fractional-order PST, and then the images are fused with extracted edges through RTV. Finally, extensive experiments were used to verify the effect of the proposed algorithm with different datasets.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3583 ◽  
Author(s):  
Shiping Ma ◽  
Hongqiang Ma ◽  
Yuelei Xu ◽  
Shuai Li ◽  
Chao Lv ◽  
...  

Images captured by sensors in unpleasant environment like low illumination condition are usually degraded, which means low visibility, low brightness, and low contrast. In order to improve this kind of images, in this paper, a low-light sensor image enhancement algorithm based on HSI color model is proposed. At first, we propose a dataset generation method based on the Retinex model to overcome the shortage of sample data. Then, the original low-light image is transformed from RGB to HSI color space. The segmentation exponential method is used to process the saturation (S) and the specially designed Deep Convolutional Neural Network is applied to enhance the intensity component (I). At the end, we back into the original RGB space to get the final improved image. Experimental results show that the proposed algorithm not only enhances the image brightness and contrast significantly, but also avoids color distortion and over-enhancement in comparison with some other state-of-the-art research papers. So, it effectively improves the quality of sensor images.


Author(s):  
Gang Li

Image enhancement processing is a very important operation during image preprocessing. Compared with to enhancc the overall contrast level of image, enhancing the local contrast of image can improve the level of such contrast directly as well as the quality and effect of image enhancement. In this paper, the gray prediction model is applied to the process of enhancing image local contrast, so as to measure the change range of image local contrast and adaptively adjust the scale of enhancing image local contrast. The simulation results show that, in addition to enhancing the contrast of gray level on the edge of image, the proposed algorithm can inhibit roughened nonedge region and improve the quality of local enhancement processing, which create a more favorable condition for the further image edge detection.


2012 ◽  
Vol 468-471 ◽  
pp. 204-207
Author(s):  
Zhen Chong Wang ◽  
Yan Qin Zhao

For the low illumination and low contrast in the coal mine, images captured from the video monitor system sometimes are not so clear to help the related personal monitoring the production and safety of the mine. According to the special environment of coal mine, an image enhancement method was presented. In this method the impulse noise which is the mainly noise in the coal mine was first reduced with median filtering, then the low contrast and illumination was greatly improved with the improved adaptive histogram equalization. Experiments show that this method can improve the quality of images underground effectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Caiwei Liu ◽  
Guohua Zhao ◽  
Jiale Dong ◽  
Yusong Lin ◽  
Meiyun Wang

Image enhancement technology is often used to improve the quality of medical images and helps doctors or expert systems identify and diagnose diseases. This paper aimed at the characteristics of magnetic resonance imaging (MRI) with complex and difficult-to-enhance details and to propose a nonsubsampled contourlet transform- (NSCT-) based enhancement algorithm called MIE-NSCT. NSCT was used for MRI sub-band decomposition. For high-pass sub-bands, four fuzzy rules were proposed to enhance multiscale and multidirectional edge contour details from adjacent eight directions, whilst for low-pass sub-bands, a new adaptive histogram enhancement algorithm was proposed. The problem of noise amplification and loss of details during the enhancement process was solved. The algorithm was verified on the public dataset BraTS2017 and compared with other advanced methods. Experimental results showed that MIE-NSCT had obvious advantages in improving the quality of medical images, and high-quality medical images showed enhanced performance in grading tumour. MIE-NSCT is suitable for integration into an interactive expert system to provide support for the visualization of disease diagnosis.


2012 ◽  
Vol 2 (3) ◽  
pp. 131-133
Author(s):  
Saruchi Garg ◽  
Madan Lal

The main purpose of image enhancement is to bring out detail that is hidden in an image or to increase contrast in a low contrast image. Image enhancement techniques provide a multitude of choices for improving the visual quality of images. Appropriate choice of such techniques is greatly influenced by the imaging modality, task at hand and viewing conditions. This paper analyses the performance of some of existing image enhancement algorithms. The performance of algorithms are evaluated  both qualitatively and quantitatively.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Sang Min Yoon ◽  
Yeon Ju Lee ◽  
Gang-Joon Yoon ◽  
Jungho Yoon

We present a novel approach for enhancing the quality of an image captured from a pair of flash and no-flash images. The main idea for image enhancement is to generate a new image by combining the ambient light of the no-flash image and the details of the flash image. In this approach, we propose a method based on Adaptive Total Variation Minimization (ATVM) so that it has an efficient image denoising effect by preserving strong gradients of the flash image. Some numerical results are presented to demonstrate the effectiveness of the proposed scheme.


2018 ◽  
Vol 228 ◽  
pp. 02008
Author(s):  
Chen Yao ◽  
Yan Xia ◽  
Jiamin Zhu

Because of lighting or the quality of CMOS/CCD, poor images are often gained, which greatly affect subjective observation. Image enhancement can improve the contrast of poor image. In our paper, we propose a new image enhancement algorithm based on frequency analysis. A central energy of FFT is utilized for computation of image enhancement factors. A linear mapping is used for image mapping. Finally, some experimental results are shown for illustration of our algorithm advantage.


2020 ◽  
Vol 13 (1) ◽  
pp. 50-62
Author(s):  
D. Suryaprabha ◽  
J. Satheeshkumar ◽  
N. Seenivasan

A vital step in automation of plant root disease diagnosis is to extract root region from the input images in an automatic and consistent manner. However, performance of segmentation algorithm over root images directly depends on the quality of input images. During acquisition, the captured root images are distorted by numerous external factors like lighting conditions, dust and so on. Hence it is essential to incorporate an image enhancement algorithm as a pre-processing step in the plant root disease diagnosis module. Image quality can be improved either by manipulating the pixels through spatial or frequency domain. In spatial domain, images are directly manipulated using their pixel values and alternatively in frequency domain, images are indirectly manipulated using transformations. Spatial based enhancement methods are considered as favourable approach for real time root images as it is simple and easy to understand with low computational complexity. In this study, real time banana root images were enhanced by attempting with different spatial based image enhancement techniques. Different classical point processing methods (contrast stretching, logarithmic transformation, power law transformation, histogram equalization, adaptive histogram equalization and histogram matching) and fuzzy based enhancement methods using fuzzy intensification operator and fuzzy if-then rule based methods were tried to enhance the banana root images. Quality of the enhanced root images obtained through different classical point processing and fuzzy based methods were measured using no-reference image quality metrics, entropy and blind image quality index. Hence, this study concludes that fuzzy based method could be deployed as a suitable image enhancement algorithm while devising the image processing modules for banana root disease diagnosis.


2018 ◽  
pp. 2211-2232
Author(s):  
C. J. Prabhakar ◽  
P. U. Praveen Kumar

In this chapter, the authors provide an overview of state-of-the-art image enhancement and restoration techniques for underwater images. Underwater imaging is one of the challenging tasks in the field of image processing and computer vision. Usually, underwater images suffer from non-uniform lighting, low contrast, diminished color, and blurring due to attenuation and scattering of light in the underwater environment. It is necessary to preprocess these images before applying computer vision techniques. Over the last few decades, many researchers have developed various image enhancement and restoration algorithms for enhancing the quality of images captured in underwater environments. The authors introduce a brief survey on image enhancement and restoration algorithms for underwater images. At the end of the chapter, we present an overview of our approach, which is well accepted by the image processing community to enhance the quality of underwater images. Our technique consists of filtering techniques such as homomorphic filtering, wavelet-based image denoising, bilateral filtering, and contrast equalization, which are applied sequentially. The proposed method increases better image visualization of objects which are captured in underwater environment compared to other existing methods.


Sign in / Sign up

Export Citation Format

Share Document