scholarly journals Analytical Quality by Design Approach of Reverse-Phase High-Performance Liquid Chromatography of Atorvastatin: Method Development, Optimization, Validation, and the Stability-Indicated Method

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nabil K. Alruwaili

The use of analytical quality by design (AQbD) approach in the optimization of the high-performance liquid chromatography (RP-HPLC) method is a novel tool. Three factors and three levels of Box–Behnken statistical design (BBD) were used for method optimization and analysis of atorvastatin. The mobile phase (acetonitrile: water), flow rate (Rt), and UV wavelength were used as independent variables. Their effects were observed in the area of the chromatogram (AU), retention time (Rt, min), and tailing factor (%). The optimized HPLC condition was found as acetonitrile:water (50 : 50), flow rate (0.68 ml/min), and UV wave length (235 nm). It gives the retention time of 2.43 min with the linearity range of 5–30 μg/ml with a high regression value (r2 = 0.999). The method was found to be precise and accurate with low % RSD (<5%). The refrigeration stability indicated that atorvastatin was stable. The force degradation study showed that the atorvastatin was fully unstable in UV light and stable in 0.1 M basic condition. It concluded that this QbD optimized method is suitable for quantification of the atorvastatin from the formulation as well as pharmacokinetic parameters.

2020 ◽  
Vol 11 (02) ◽  
pp. 296-302
Author(s):  
Aseem Kumar ◽  
Anil Kumar Sharma ◽  
Rohit Dutt

The present work demonstrates a simple, rapid, precise, specific, and sensitive reverse-phase high-performance liquid chromatography (RP-HPLC) method for analyzing glimepiride in pure and tablet forms. The present method was developed using a C18 column 150 × 4.6 mm, with 5 μm, and packing L1 maintained at a temperature of 30°C. The mobile phase was prepared by dissolving 0.5 gram of monobasic sodium phosphate in 500 mL of distilled water, pH of the solution adjusted to 2.1 to 2.7 with 10% phosphoric acid, and added 500 mL of acetonitrile. The mobile phase was pumped in the highperformance liquid chromatography (HPLC) system at a flow rate of 1 mL/min, and separation was carried out at 228 nm, using an ultraviolet (UV) detector. The chromatographic separation was achieved with peak retention time (RT) at about 9.30 minutes, and the method was found to be linear over a concentration range of 40 to 140 μg/mL. The specificity of the method represented no interference of the excipients during the analysis, and stability testing after 24 hours also showed that the method is suitable and specific. The accuracy was between 99.93 to 99.96%, with limit of detection (LOD) and limit of quantitation (LOQ) being 0.354 μg/mL, 1.18 μg/mL, respectively. Satisfactory results were found for precision and robustness parameters during the development and validation stage for the analytical method. The proposed method was also adopted for the analysis of glimepiride tablets to improve the overall quality control. Using this method, symmetric peak shape was obtained with reasonable retention time. The retention time of glimepiride for six repetitions is 9.3 ± 0.1 minutes; the run time is 21 minutes. The proposed RP-HPLC method is a modification of the United States Pharmacopeia (USP) method, and it was found to be valid for glimepiride within concentration ranges 40 to 140 μg/mL, using C18 analytical columns, and isocratic elution with UV detection, and at 1 mL/min of flow rate.


2020 ◽  
Vol 32 (3) ◽  
pp. 157-165
Author(s):  
Ghulam Abbas ◽  
Malik Saadullah ◽  
Akhtar Rasul ◽  
Shahid Shah ◽  
Sajid Mehmood Khan ◽  
...  

A sensitive, inexpensive high-performance liquid chromatography–ultraviolet detection (HPLC–UV) method has been developed and validated for the simultaneous monitoring of pantoprazole sodium sesquihydrate (PSS) and domperidone maleate (DM) in rabbit plasma on a C18 column with UV detection at 285 nm. Box–Behnken design was used with 3 independent variables, namely, flow rate (X1), mobile phase composition (X2), and phosphate buffer pH (X3), which were used to design mathematical models. Response surface design was applied to optimize the dependent variables, i.e., retention time (Y1 and Y2) and percentage recoveries (Y3 and Y4) of PSS and DM. The method was sensitive and reproducible over 1.562 to 25 μg/mL. The effect of the quadratic outcome of flow rate, mobile phase composition, and buffer pH on retention time (p ˂ 0.001) and percentage recoveries of PSS and DM (p = 0.0016) were significant. The regression values obtained from analytical curve of PSS and DM were 0.999 and 0.9994, respectively. The percentage recoveries of PSS and DM were ranged from 94.5 to 100.41% and 94.77 to 100.31%, respectively. The developed method was applied for studying the pharmacokinetics of PSS and DM. The Cmax of test and reference formulations were 48.06 ± 0.347 μg/mL and 46.31 ± 0.398 μg/mL for PSS, and 15.11 ± 1.608 μg/mL and 12.06 ± 1.234 μg/mL for DM, respectively.


Author(s):  
VANITHA C ◽  
SATYANARAYANA SV ◽  
BHASKAR REDDY K

Objective: A simple, robust, precise, and selective stability-indicating liquid chromatography (LC) method (reverse-phase high-performance LC) was developed for the estimation of simeprevir through quality by design paradigm. Methods: The chromatographic separation was performed on Water’s 2695(Alliance) equipped with a photodiode array detector at 300 nm. The method was developed on Discovery C18 column (250×4.6, 5 mm) using orthophosphoric acid and acetonitrile (55:45 % v/v) with the flow rate of 1 ml/min at 30°C. The degradation studies of simeprevir were carried out under the stress conditions of hydrolysis (acid, base, and neutral), oxidation, photolytic, and thermal as per the International Conference on Harmonization (ICH) guidelines. The peroxide hydrolysis shows more critical impurities which were well resolved from pure drug with the application of design of experiment and optimized the method. Results: Independent variables (critical analytical attributes) selected for the method optimization were mobile phase ratio, flow rate, and temperature of the column based on the risk assessment. The retention time and resolution were selected as the method response. In response surface method, the central composite design and 23 factorial designs were employed for the optimization of the method. The polynomial equation was derived for the estimation of method response. Conclusion: The method was optimized for better resolution among the drug, and impurity peaks were then validated as per the ICH parameters.


Author(s):  
Baitha Maggadani ◽  
Harmita Harmita ◽  
Yahdiana Harahap ◽  
Hanna Hutabalian

Objective: The objective of this study was to obtain a simple and selective analysis method for determination of hydroquinone, tretinoin and betamethasone in whitening creams using reversed phase high-performance liquid chromatography (HPLC). Methods: Reverse Phase HPLC was used for method development, validation studies, and sample analysis. The method was optimized by evaluating several parameters that affects extraction of the sample, composition and types of mobile phase and also flow rate. Chromatographic separation was optimized on a C18 column [Sunfire, 250 x 4.6 mm, 5µm] utilizing a mobile phase consisting acetonitrile, methanol (90:10 v/v) and slightly addition of glacial acetic acid to reach pH 5in the ratio of 30: 50:20 v/v at a flow rate of 0.8 ml/min with UV detection at 270 nm and 350 nm. Results: The analytical methods fulfilled the validation requirements including accuracy, precision, linearity, selectivity, detection limits, and quantitation limits. The results showed the mean levels of hydroquinone, tretinoin and betamethasone in samples A and B were 1.78%; 0.07%; 0.12% and 2.00%; 0.07%; 0.13% respectively. Conclusion: The method was successfully applied for the determination of cosmetic formulation containing hydroquinone, tretinoin and betamethasone simultaneously. There were seven samples analyzed and two samples were positive containing hydroquinone, tretinoin, and betamethasone.


Sign in / Sign up

Export Citation Format

Share Document