scholarly journals The Active Frequency Control Strategy of the Wind Power Based on Model Predictive Control

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ya-ling Chen ◽  
Yin-peng Liu ◽  
Xiao-fei Sun

In this paper, an active frequency control strategy of wind turbines based on model predictive control is proposed by using the power margin of wind turbines operating in load shedding mode. The frequency response model of the microgrid system with the load shedding of the wind turbines is used to predict the output power and system frequency deviation of the wind turbine. According to the prediction information, the output power control signal of the model predictive controller in the wind turbine can be optimized. On this basis, a wind turbine active participation frequency control strategy based on model predictive control is designed by rolling prediction and optimization. The wind turbine power control signal after the strategy is used to adjust the output power of the wind turbine and balance the change of the active power of the system to reduce the frequency deviation.

2019 ◽  
Vol 42 (1) ◽  
pp. 81-93 ◽  
Author(s):  
Hamidreza Bahmani ◽  
Farhad Bayat ◽  
Mohamadjavad Golchin

In this paper, the model predictive control (MPC) approach is utilized to stabilize the output power of the wind turbines at the region above the rated wind speed. The controller is designed based on two different approaches and results have been compared. First, by putting the advantages of the MPC approach into practice, the optimal output power regulation of the wind turbine is obtained using a control oriented linear parameter varying (LPV) model of the wind turbine. However, this method inherently requires high computational cost and thus powerful hardware and processors. To cope with this limitation, an efficient suboptimal approach is proposed that significantly reduces the online computational complexity of the controller. In this approach, the main part of the controller design procedure is done off-line prior to the closed-loop wind turbine power generation and a set of optimal controllers were designed using the MPC scheme. Then, a convex combination of the calculated controllers is used for online power regulation of the wind turbine. It is noted that the selected wind turbine is a horizontal axis wind turbine operating at various speeds ranging from 10-25 m/s. Finally, using a set of simulation results we investigate the performance of the proposed approach.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 530 ◽  
Author(s):  
Wei Li ◽  
Dean Kong ◽  
Qiang Xu ◽  
Xiaoyu Wang ◽  
Xiang Zhao ◽  
...  

In this paper, an industrial application-oriented wind farm automatic generation control strategy is proposed to stabilize the wind farm power output under power limitation conditions. A wind farm with 20 units that are connected beneath four transmission lines is the selected control object. First, the power-tracking dynamic characteristic of wind turbines is modeled as a first-order inertial model. Based on the wind farm topology, the wind turbines are grouped into four clusters to fully use the clusters’ smoothing effect. A method for frequency-domain aggregation and approximation is used to obtain the clusters’ power-tracking equivalent model. From the reported analysis, a model predictive control strategy is proposed in this paper to optimize the rapidity and stability of the power-tracking performance. In this method, the power set-point for the wind farm is dispatched to the clusters. Then, the active power control is distributed from the cluster to the wind turbines using the conventional proportional distribution strategy. Ultra-short-term wind speed prediction is also included in this paper to assess the real-time performance. The proposed strategy was tested using a simulated wind farm based on an industrial wind farm. Good power-tracking performance was achieved in several scenarios, and the results demonstrate that the performance markedly improved using the proposed strategy compared with the conventional strategy.


2012 ◽  
Vol 608-609 ◽  
pp. 494-499 ◽  
Author(s):  
Xin Shou Tian ◽  
Yue Hui Huang ◽  
Xiao Yan Xu ◽  
Wei Sheng Wang

In order to improve the frequency stability of grid, new control strategy for wind turbines need to be developed with high wind power penetration. This work analyzes the requirements of frequency control for wind turbines in some countries, and the characteristics and methods of typical frequency control strategy are analyzed. To meet the requirements of frequency control of wind turbine and to improve wind energy utilization efficiency, a method of optimization scheme of frequency control on wind turbine is given in the paper, and the operating curve of wind turbine with the control method is determined, at the same time this work gives a general method about how to determine some key parameters.


Author(s):  
Babak Mehdizadeh Gavgani ◽  
Arash Farnam ◽  
Jeroen D. M. De Kooning ◽  
Guillaume Crevecoeur

Abstract Variable speed small to medium wind turbines need to cope with the intermittent nature of wind speed at lower altitudes. This imposes challenges on optimally tracking the maximum power point (MPP) during partial load and makes the wind turbine dynamics highly nonlinear. As a result, using one linear controller around a specific operating point may not guarantee acceptable performance in the other operating points. In addition, wind speed variations cause fluctuations in the output power of the turbine. The Soft Switching Multiple Model Predictive Control (SSMMPC) technique is introduced to tackle the latter problems when considering multiple linear models around various operating points (MPPs) approximating the nonlinear dynamics. The gap metric method is used to assess how close different linear models are with respect to each other. The closed loop system stability is validated using Lyapunov theory. The controller performance is investigated and compared with a bidirectional TSR-based controller through simulations using the FAST NREL 10kW wind turbine model. The results verify the improvements that can be attained by using SSMMPC in terms of higher maximum power point tracking quality, lower generator torque oscillations and smoother output power, consequently.


Sign in / Sign up

Export Citation Format

Share Document