scholarly journals Single Standard Substance for the Simultaneous Determination of Eleven Components in the Extract of Paeoniae Radix Alba (Root of Paeonia lactiflora Pall.)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Menglan Shen ◽  
Qiaoyan Zhang ◽  
Luping Qin ◽  
Binjun Yan

Paeoniae Radix Alba (PRA), an herbal drug produced from the root of Paeonia lactiflora Pall., is widely used in many herbal medicine prescriptions/preparations. Since the pharmacological effects of PRA come from multiple chemical components, it is important to establish a method for the determination of those components in PRA extracts with simple operation and low cost, which is more suitable to evaluate the quality of PRA extracts and optimize the extraction process. This work introduced the quantitative analysis of multicomponents with a single-marker (QAMS) method for the simultaneous determination of eleven bioactive components in PRA extracts, including gallic acid, oxypaeoniflorin, catechin, albiflorin, paeoniflorin, ethyl gallate, galloylpaeoniflorin, pentagalloylglucose, benzoic acid, benzoylpaeoniflorin, and paeonol. In the QAMS method established based on high performance liquid chromatography with diode array detection, only the reference substance of paeoniflorin was needed, and the other ten components were determined based on their relative correction factors (RCFs) to paeoniflorin. Moreover, the repeatability and robustness of the RCFs were studied with different column temperatures, detection wavelengths, flow rates, column types, and instruments. In method validation, good linearity (r > 0.999), stability, repeatability (RSD < 1.9%), and accuracy (recoveries within 96.1%–105.5%) were shown. Sample analyses showed that the QAMS method was consistent with the conventional external standard method. The established method provided a comprehensive, efficient, and low-cost tool for the routine quality evaluation of PRA extracts.

2019 ◽  
Vol 102 (6) ◽  
pp. 1892-1900
Author(s):  
Nada S. Zamzam ◽  
Mona H. Abdel Rahman ◽  
Maha F. Abdel Ghani

Background: Acesulfame-K (ACE), butylated hydroxytoluene (BHT), and aspartame (ASP) are a common combination of food additives added to chewing gums. The abuse of these additives results in severe adverse health effects; however, they are still extensively used owing to their high performance and low cost. Objective: The development and optimization of a simple, cheap, sensitive, and eco-friendly HPLC/UV method for the simultaneous determination of ASP, ACE, and BHT along with aspartame degradation product phenylalanine (PHEN) in chewing gum. Methods: The method was optimized using a 5 μm C18 column and an eluent consisting of methanol and 0.1 M phosphate buffer (pH 5.0) according to a suitable gradient elution program. Simple sample preparation, consisting of dilution, homogenization, and sonication followed by centrifugation and filtration, was optimized and used for the extraction of chewing gum. The greenness of the method was evaluated. Results: The proposed method exhibited excellent linearity (R2 > 0.9996), low LOQ (0.08–0.95 μg/mL), and recoveries between 85.3 and 98.83% with relative SD (RSD) ≤ 2.7%. High resolution was obtained with <25 min run times with excellent precision (RSD: 0.28–1.33%). This method was successfully applied for the simultaneous determination of ACE, ASP, and BHT in commercial chewing gum; PHEN was not detected. Furthermore, our method is considered to be environmentally acceptable. Conclusions: The results demonstrate that the developed method can be used to detect ACE, BHT, ASP, and PHEN in chewing gum. Highlights: A new sensitive, green HPLC/UV method is developed to be used as a minimal-cost routine analysis procedure for commercial chewing gum.


2019 ◽  
Vol 102 (6) ◽  
pp. 1892-1900
Author(s):  
Nada S Zamzam ◽  
Mona H Abdel Rahman ◽  
Maha F Abdel Ghani

Abstract Background: Acesulfame-K (ACE), butylated hydroxytoluene (BHT), and aspartame (ASP) are a common combination of food additives added to chewing gums. The abuse of these additives results in severe adverse health effects; however, they are still extensively used owing to their high performance and low cost. Objective: The development and optimization of a simple, cheap, sensitive, and eco-friendly HPLC/UV method for the simultaneous determination of ASP, ACE, and BHT along with aspartame degradation product phenylalanine (PHEN) in chewing gum. Methods: The method was optimized using a 5 μm C18 column and an eluent consisting of methanol and 0.1 M phosphate buffer (pH 5.0) according to a suitable gradient elution program. Simple sample preparation, consisting of dilution, homogenization, and sonication followed by centrifugation and filtration, was optimized and used for the extraction of chewing gum. The greenness of the method was evaluated. Results: The proposed method exhibited excellent linearity (R2 &gt; 0.9996), low LOQ (0.08–0.95 μg/mL), and recoveries between 85.3 and 98.83% with relative SD (RSD) ≤ 2.7%. High resolution was obtained with &lt;25 min run times with excellent precision (RSD: 0.28–1.33%). This method was successfully applied for the simultaneous determination of ACE, ASP, and BHT in commercial chewing gum; PHEN was not detected. Furthermore, our method is considered to be environmentally acceptable. Conclusions: The results demonstrate that the developed method can be used to detect ACE, BHT, ASP, and PHEN in chewing gum. Highlights: A new sensitive, green HPLC/UV method is developed to be used as a minimal-cost routine analysis procedure for commercial chewing gum.


2020 ◽  
Vol 16 ◽  
Author(s):  
Abdürrezzak E. Bozdoğana ◽  
Özlem Aksu Dönmez ◽  
Şule Dinç-Zor

Introduction: This study introduces an effective strategy which combines high performance liquid chromatography coupled with diode array detection (HPLC-DAD) with multivariate calibration methods for the simultaneous determination paracetamol (PAR), pseudoephedrine HCl (PSE), dextromethorphan HBr (DEX) and doxylamine succinate (DOX) along with sweetener saccharine (SAC) in syrup formulation. Methods: PLS-2 and PCR calibration algorithms were selected for data processing. Based on the strategy, all target analytes were rapidly quantified within 5.3 min under the simple isocratic elution (water : methanol, 20/80, v/v) without a complete separation. The performances of the proposed methods were confirmed by analyzing a series of synthetic solutions including different concentrations of analytes Results: The average recovery values were in the range of 100.33 to 103.70%, and the REP (relative error of prediction) values ranged from 1.96 to 4.36% showed that these methods could provide satisfactory predictions. Conclusion: Novel HPLC methods coupled with PLS and PCR algorithm enable a simple, fast and low-cost analysis of similar pharmaceutical products for simultaneous determination of the target compounds.


Sign in / Sign up

Export Citation Format

Share Document