scholarly journals CoopECC: A Collaborative Cryptographic Mechanism for the Internet of Things

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wassim Jerbi ◽  
Abderrahmen Guermazi ◽  
Omar Cheikhrouhou ◽  
Hafedh Trabelsi

The emergence of IoT applications has risen the security issues of the big data sent by the IoT devices. The design of lightweight cryptographic algorithms becomes a necessity. Moreover, elliptic curve cryptography (ECC) is a promising cryptographic technology that has been used in IoT. However, connected objects are resource-constrained devices, with limited computing power and energy power. Driven by these motivations, we propose and develop a secure cryptographic protocol called CoopECC which leverages the organization of IoT nodes into cluster to distribute the load of cluster head (CH) among its cluster members. This technique proves that it optimizes the resource consumption of the IoT nodes including computation and energy consumption. Performance evaluation, done with TOSSIM simulator, shows that the proposed protocol CoopECC outperforms the original ECC algorithm, in terms of computation time, consumed energy, and the network’s lifespan.

Author(s):  
Kamalendu Pal

The internet of things (IoT) is ushering a new age of technology-driven automation of information systems into the manufacturing industry. One of the main concerns with IoT systems is the lack of privacy and security preserving schemes for controlling access and ensuring the safety of the data. Many security issues arise because of the centralized architecture of IoT-based information systems. Another concern is the lack of appropriate authentication and access control schemes to moderate the access to information generated by the IoT devices in the manufacturing industry. Hence, the question that arises is how to ensure the identity of the manufacturing machinery or the communication nodes. This chapter presents the advantages of blockchain technology to secure the operation of the modern manufacturing industry in a trustless environment with IoT applications. The chapter reviews the challenges and threats in IoT applications and how integration with blockchain can resolve some of the manufacturing enterprise information systems (EIS).


Author(s):  
Sreelakshmi K. K. ◽  
Ashutosh Bhatia ◽  
Ankit Agrawal

The internet of things (IoT) has become a guiding technology behind automation and smart computing. One of the major concerns with the IoT systems is the lack of privacy and security preserving schemes for controlling access and ensuring the security of the data. A majority of security issues arise because of the centralized architecture of IoT systems. Another concern is the lack of proper authentication and access control schemes to moderate access to information generated by the IoT devices. So the question that arises is how to ensure the identity of the equipment or the communicating node. The answer to secure operations in a trustless environment brings us to the decentralized solution of Blockchain. A lot of research has been going on in the area of convergence of IoT and Blockchain, and it has resulted in some remarkable progress in addressing some of the significant issues in the IoT arena. This work reviews the challenges and threats in the IoT environment and how integration with Blockchain can resolve some of them.


2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) will consist of billions (50 billions by 2020) of interconnected heterogeneous devices denoted as “Smart Objects:” tiny, constrained devices which are going to be pervasively deployed in several contexts. To meet low-latency requirements, IoT applications must rely on specific architectures designed to handle the gigantic stream of data coming from Smart Objects. This paper propose a novel Cloud architecture for Big Stream applications that can efficiently handle data coming from Smart Objects through a Graph-based processing platform and deliver processed data to consumer applications with low latency. The authors reverse the traditional “Big Data” paradigm, where real-time constraints are not considered, and introduce the new “Big Stream” paradigm, which better fits IoT scenarios. The paper provides a performance evaluation of a practical open-source implementation of the proposed architecture. Other practical aspects, such as security considerations, and possible business oriented exploitation plans are presented.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Ritu Chauhan ◽  
Gatha Tanwar

The internet of things has brought in innovations in the daily lives of users. The enthusiasm and openness of consumers have fuelled the manufacturers to dish out new devices with more features and better aesthetics. In an attempt to keep up with the competition, the manufacturers are not paying enough attention to cyber security of these smart devices. The gravity of security vulnerabilities is further aggravated due to their connected nature. As a result, a compromised device would not only stop providing the intended service but could also act as a host for malware introduced by an attacker. This study has focused on 10 manufacturers, namely Fitbit, D-Link, Edimax, Ednet, Homematic, Smarter, Osram, Belkin Wemo, Philips Hue, and Withings. The authors studied the security issues which have been raised in the past and the communication protocols used by devices made by these brands. It was found that while security vulnerabilities could be introduced due to lack of attention to details while designing an IoT device, they could also get introduced by the protocol stack and inadequate system configuration. Researchers have iterated that protocols like TCP, UDP, and mDNS have inherent security shortcomings and manufacturers need to be mindful of the fact. Furthermore, if protocols like EAPOL or Zigbee have been used, then the device developers need to be aware of safeguarding the keys and other authentication mechanisms. The authors also analysed the packets captured during setup of 23 devices by the above-mentioned manufacturers. The analysis gave insight into the underlying protocol stack preferred by the manufacturers. In addition, they also used count vectorizer to tokenize the protocols used during device setup and use them to model a multinomial classifier to identify the manufacturers. The intent of this experiment was to determine if a manufacturer could be identified based on the tokenized protocols. The modelled classifier could then be used to drive an algorithm to checklist against possible security vulnerabilities, which are characteristic of the protocols and the manufacturer history. Such an automated system will be instrumental in regular diagnostics of a smart system. The authors then wrapped up this report by suggesting some measures a user can take to protect their local networks and connected devices.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 309 ◽  
Author(s):  
Hind Bangui ◽  
Said Rakrak ◽  
Said Raghay ◽  
Barbora Buhnova

Cloud computing has significantly enhanced the growth of the Internet of Things (IoT) by ensuring and supporting the Quality of Service (QoS) of IoT applications. However, cloud services are still far from IoT devices. Notably, the transmission of IoT data experiences network issues, such as high latency. In this case, the cloud platforms cannot satisfy the IoT applications that require real-time response. Yet, the location of cloud services is one of the challenges encountered in the evolution of the IoT paradigm. Recently, edge cloud computing has been proposed to bring cloud services closer to the IoT end-users, becoming a promising paradigm whose pitfalls and challenges are not yet well understood. This paper aims at presenting the leading-edge computing concerning the movement of services from centralized cloud platforms to decentralized platforms, and examines the issues and challenges introduced by these highly distributed environments, to support engineers and researchers who might benefit from this transition.


2018 ◽  
Vol 38 (1) ◽  
pp. 121-129 ◽  
Author(s):  
Pablo Antonio Pico Valencia ◽  
Juan A. Holgado-Terriza ◽  
Deiver Herrera-Sánchez ◽  
José Luis Sampietro

Recently, the scientific community has demonstrated a special interest in the process related to the integration of the agent-oriented technology with Internet of Things (IoT) platforms. Then, it arises a novel approach named Internet of Agents (IoA) as an alternative to add an intelligence and autonomy component for IoT devices and networks. This paper presents an analysis of the main benefits derived from the use of the IoA approach, based on a practical point of view regarding the necessities that humans demand in their daily life and work, which can be solved by IoT networks modeled as IoA infrastructures. It has been presented 24 study cases of the IoA approach at different domains ––smart industry, smart city and smart health wellbeing–– in order to define the scope of these proposals in terms of intelligence and autonomy in contrast to their corresponding generic IoT applications.


Author(s):  
Santosh Pandurang Jadhav

The Internet of Things (IoT) is becoming the most relevant next Internet-related revolution in the world of Technology. It permits millions of devices to be connected and communicate with each other. Beside ensuring reliable connectivity their security is also a great challenge. Abounding IoT devices have a minimum of storage and processing capacity and they usually need to be able to operate on limited power consumption. Security paths that depend maximum on encryption are not good for these resource constrained devices, because they are not suited for performing complicated encryption and decryption tasks quickly to be able to transmit data securely in real-time. This paper contains an overview of some of the cryptographic-based schemes related to communication and computational costs for resource constrained devices and considers some approaches towards the development of highly secure and lightweight security mechanisms for IoT devices.


2020 ◽  
Author(s):  
Shamim Muhammad ◽  
Inderveer Chana ◽  
Supriya Thilakanathan

Edge computing is a technology that allows resources to be processed or executed close to the edge of the internet. The interconnected network of devices in the Internet of Things has led to an increased amount of data, increasing internet traffic usage every year. Also, edge computing is driving applications and computing power away from the integrated points to areas close to users, leading to improved performance of the application. Despite the explosive growth of the edge computing paradigm, there are common security vulnerabilities associated with the Internet of Things applications. This paper will evaluate and analyze some of the most common security issues that pose a serious threat to the edge computing paradigm.


Author(s):  
Syed Farid Syed Adnan ◽  
Mohd Anuar Mat Isa ◽  
Habibah Hashim

Internet of Things (IoT) is a way of providing data with the physical thing that interconnected to the network, which is the Internet. The IoT devices connected to the internet, broadcast of the data to the broker or a server, becomes an open route for attackers to gain the data and making the data becomes vulnerable. Thus, the data could be altered or spoofed by an attacker which led to security issues especially on data integrity. Therefore, the data security collected from the sensors is as important as on the servers that eventually become the big data. However, most sensors are low powered devices in term of CPU, storage, memory and batteries that cryptographic algorithm computations might give overhead to the sensors and reduce the batteries even faster than it is supposed to be. Instead of looking at symmetric encryption scheme, this paper tries to explore the capabilities of the asymmetric scheme on resource constrained devices communications. Thus, this paper presents an RF communication analysis of a low consumption asymmetric encryption, the AAβ (AA-Beta) that promising to implement on the IoT devices to secure the IoT networks. The result shows only 14% size increased in ciphertext from plaintext and the RF simulation communications show a better result in Raspbian OS environment compare to windows environment even though with same configurations


Sign in / Sign up

Export Citation Format

Share Document