scholarly journals Using Factor Decomposition Machine Learning Method to Music Recommendation

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dapeng Sun

The user data mining was introduced into the model construction process, and the user behavior was decomposed by analyzing various influencing factors through the factorization machine (FM) learning method. In the recommendation screening stage, the collaborative filtering recommendation is combined to screen the recommendation candidate set. The idea of user-based collaborative filtering (CF) is used for reference to obtain music works favored by similar users. On the other hand, we learn from item-based CF, which ensures that the candidate set covers user preference. Firstly, the user’s interest value is predicted by using dynamic interest model. Then, the common problems such as cold start and hot items processing are fully considered. The frequent pattern growth algorithm is compared with the association rule algorithm based on the collaborative filtering recommendation algorithm and the content-based recommendation algorithm, which proves the superiority of the algorithm and its role in solving the recommendation problem after applying the recommendation. The music data in the database data conversion effectively improve the efficiency and accuracy of mining. According to the implementation of the algorithm described in this article, the accuracy of the music recommendation results used to recommend user satisfaction is proved. And the recommended music is indeed feasible and practical.

2020 ◽  
Vol 309 ◽  
pp. 03009
Author(s):  
Yingjie Jin ◽  
Chunyan Han

The collaborative filtering recommendation algorithm is a technique for predicting items that a user may be interested in based on user history preferences. In the recommendation process of music data, it is often difficult to score music and the display score data for music is less, resulting in data sparseness. Meanwhile, implicit feedback data is more widely distributed than display score data, and relatively easy to collect, but implicit feedback data training efficiency is relatively low, usually lacking negative feedback. In order to effectively solve the above problems, we propose a music recommendation algorithm combining clustering and latent factor models. First, the user-music play record data is processed to generate a user-music matrix. The data is then analyzed using a latent factor probability model on the resulting matrix to obtain a user preference matrix U and a musical feature matrix V. On this basis, we use two K- means algorithms to perform user clustering and music clustering on two matrices. Finally, for the user preference matrix and the commodity feature matrix that complete the clustering, a user-based collaborative filtering algorithm is used for prediction. The experimental results show that the algorithm can reduce the running cost of large-scale data and improve the recommendation effect.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hui Ning ◽  
Qian Li

Collaborative filtering technology is currently the most successful and widely used technology in the recommendation system. It has achieved rapid development in theoretical research and practice. It selects information and similarity relationships based on the user’s history and collects others that are the same as the user’s hobbies. User’s evaluation information is to generate recommendations. The main research is the inadequate combination of context information and the mining of new points of interest in the context-aware recommendation process. On the basis of traditional recommendation technology, in view of the characteristics of the context information in music recommendation, a personalized and personalized music based on popularity prediction is proposed. Recommended algorithm is MRAPP (Media Recommendation Algorithm based on Popularity Prediction). The algorithm first analyzes the user’s contextual information under music recommendation and classifies and models the contextual information. The traditional content-based recommendation technology CB calculates the recommendation results and then, for the problem that content-based recommendation technology cannot recommend new points of interest for users, introduces the concept of popularity. First, we use the memory and forget function to reduce the score and then consider user attributes and product attributes to calculate similarity; secondly, we use logistic regression to train feature weights; finally, appropriate weights are used to combine user-based and item-based collaborative filtering recommendation results. Based on the above improvements, the improved collaborative filtering recommendation algorithm in this paper has greatly improved the prediction accuracy. Through theoretical proof and simulation experiments, the effectiveness of the MRAPP algorithm is demonstrated.


2021 ◽  
Author(s):  
Zhisheng Yang ◽  
Jinyong Cheng

Abstract In recommendation algorithms, data sparsity and cold start problems are always inevitable. In order to solve such problems, researchers apply auxiliary information to recommendation algorithms to mine and obtain more potential information through users' historical records and then improve recommendation performance. This paper proposes a model ST_RippleNet, which combines knowledge graph with deep learning. In this model, users' potential interests are mined in the knowledge graph to stimulate the propagation of users' preferences on the set of knowledge entities. In the propagation of preferences, we adopt a triple-based multi-layer attention mechanism, and the distribution of users' preferences for candidate items formed by users' historical click information is used to predict the final click probability. In ST_RippleNet model, music data set is added to the original movie and book data set, and the improved loss function is applied to the model, which is optimized by RMSProp optimizer. Finally, tanh function is added to predict click probability to improve recommendation performance. Compared with the current mainstream recommendation methods, ST_RippleNet recommendation algorithm has very good performance in AUC and ACC, and has substantial improvement in movie, book and music recommendation.


Author(s):  
Sang Thi Thanh Nguyen ◽  
Bao Duy Tran

Recommender systems (RS) have become a fundamental tool for helping users make decisions around millions of different choices nowadays – the era of Big Data. It brings a huge benefit for many business models around the world due to their effectiveness on the target customers. A lot of recommendation models and techniques have been proposed and many accomplished incredible outcomes. Collaborative filtering and content-based filtering methods are common, but these both have some disadvantages. A critical one is that they only focus on a user's long-term static preference while ignoring his or her short-term transactional patterns, which results in missing the user's preference shift through the time. In this case, the user's intent at a certain time point may be easily submerged by his or her historical decision behaviors, which leads to unreliable recommendations. To deal with this issue, a session of user interactions with the items can be considered as a solution. In this study, Long Short-Term Memory (LSTM) networks will be analyzed to be applied to user sessions in a recommender system. The MovieLens dataset is considered as a case study of movie recommender systems. This dataset is preprocessed to extract user-movie sessions for user behavior discovery and making movie recommendations to users. Several experiments have been carried out to evaluate the LSTM-based movie recommender system. In the experiments, the LSTM networks are compared with a similar deep learning method, which is Recurrent Neural Networks (RNN), and a baseline machine learning method, which is the collaborative filtering using item-based nearest neighbors (item-KNN). It has been found that the LSTM networks are able to be improved by optimizing their hyperparameters and outperform the other methods when predicting the next movies interested by users.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Jianrui Chen ◽  
Zhihui Wang ◽  
Tingting Zhu ◽  
Fernando E. Rosas

The purpose of recommendation systems is to help users find effective information quickly and conveniently and also to present the items that users are interested in. While the literature of recommendation algorithms is vast, most collaborative filtering recommendation approaches attain low recommendation accuracies and are also unable to track temporal changes of preferences. Additionally, previous differential clustering evolution processes relied on a single-layer network and used a single scalar quantity to characterise the status values of users and items. To address these limitations, this paper proposes an effective collaborative filtering recommendation algorithm based on a double-layer network. This algorithm is capable of fully exploring dynamical changes of user preference over time and integrates the user and item layers via an attention mechanism to build a double-layer network model. Experiments on Movielens, CiaoDVD, and Filmtrust datasets verify the effectiveness of our proposed algorithm. Experimental results show that our proposed algorithm can attain a better performance than other state-of-the-art algorithms.


Information ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 439 ◽  
Author(s):  
Diego Sánchez-Moreno ◽  
Vivian López Batista ◽  
M. Dolores Muñoz Vicente ◽  
Ángel Luis Sánchez Lázaro ◽  
María N. Moreno-García

Recent research in the field of recommender systems focuses on the incorporation of social information into collaborative filtering methods to improve the reliability of recommendations. Social networks enclose valuable data regarding user behavior and connections that can be exploited in this area to infer knowledge about user preferences and social influence. The fact that streaming music platforms have some social functionalities also allows this type of information to be used for music recommendation. In this work, we take advantage of the friendship structure to address a type of recommendation bias derived from the way collaborative filtering methods compute the neighborhood. These methods restrict the rating predictions for a user to the items that have been rated by their nearest neighbors while leaving out other items that might be of his/her interest. This problem is different from the popularity bias caused by the power-law distribution of the item rating frequency (long-tail), well-known in the music domain, although both shortcomings can be related. Our proposal is based on extending and diversifying the neighborhood by capturing trust and homophily effects between users through social structure metrics. The results show an increase in potentially recommendable items while reducing recommendation error rates.


Sign in / Sign up

Export Citation Format

Share Document