scholarly journals Joint Subspace and Low-Rank Coding Method for Makeup Face Recognition

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jianwei Lu ◽  
Guohua Zhou ◽  
Jiaqun Zhu ◽  
Lei Xue

Facial makeup significantly changes the perceived appearance of the face and reduces the accuracy of face recognition. To adapt to the application of smart cities, in this study, we introduce a novel joint subspace and low-rank coding method for makeup face recognition. To exploit more discriminative information of face images, we use the feature projection technology to find proper subspace and learn a discriminative dictionary in such subspace. In addition, we use a low-rank constraint in the dictionary learning. Then, we design a joint learning framework and use the iterative optimization strategy to obtain all parameters simultaneously. Experiments on real-world dataset achieve good performance and demonstrate the validity of the proposed method.

2021 ◽  
pp. 1-11
Author(s):  
Suphawimon Phawinee ◽  
Jing-Fang Cai ◽  
Zhe-Yu Guo ◽  
Hao-Ze Zheng ◽  
Guan-Chen Chen

Internet of Things is considerably increasing the levels of convenience at homes. The smart door lock is an entry product for smart homes. This work used Raspberry Pi, because of its low cost, as the main control board to apply face recognition technology to a door lock. The installation of the control sensing module with the GPIO expansion function of Raspberry Pi also improved the antitheft mechanism of the door lock. For ease of use, a mobile application (hereafter, app) was developed for users to upload their face images for processing. The app sends the images to Firebase and then the program downloads the images and captures the face as a training set. The face detection system was designed on the basis of machine learning and equipped with a Haar built-in OpenCV graphics recognition program. The system used four training methods: convolutional neural network, VGG-16, VGG-19, and ResNet50. After the training process, the program could recognize the user’s face to open the door lock. A prototype was constructed that could control the door lock and the antitheft system and stream real-time images from the camera to the app.


Author(s):  
Ayan Seal ◽  
Debotosh Bhattacharjee ◽  
Mita Nasipuri ◽  
Dipak Kumar Basu

Automatic face recognition has been comprehensively studied for more than four decades, since face recognition of individuals has many applications, particularly in human-machine interaction and security. Although face recognition systems have achieved a significant level of maturity with some realistic achievement, face recognition still remains a challenging problem due to large variation in face images. Face recognition techniques can be generally divided into three categories based on the face image acquisition methodology: methods that work on intensity images, those that deal with video sequences, and those that require other sensory (like 3D sensory or infra-red imagery) data. Researchers are using thermal infrared images for face recognition. Since thermal infrared images have some advantages over 2D images. In this chapter, an overview of some of the well-known techniques of face recognition using thermal infrared faces are discussed, and some of the drawbacks and benefits of each of these methods mentioned therein are discussed. This chapter talks about some of the most recent algorithms developed for this purpose, and tries to give a brief idea of the state of the art of face recognition technology. The authors propose one approach for evaluating the performance of face recognition algorithms using thermal infrared images. They also note the results of several classifiers on a benchmark dataset (Terravic Facial Infrared Database).


Author(s):  
Stefano Berretti ◽  
Alberto Del Bimbo ◽  
Pietro Pala

In this paper, an original hybrid 2D-3D face recognition approach is proposed using two orthogonal face images, frontal and side views of the face, to reconstruct the complete 3D geometry of the face. This is obtained using a model based solution, in which a 3D template face model is morphed according to the correspondence of a limited set of control points identified on the frontal and side images in addition to the model. Control points identification is driven by an Active Shape Model applied to the frontal image, whereas subsequent manual assistance is required for control points localization on the side view. The reconstructed 3D model is finally matched, using the iso-geodesic regions approach against a gallery of 3D face scans for the purpose of face recognition. Preliminary experimental results are provided on a small database showing the viability of the approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tongxin Wei ◽  
Qingbao Li ◽  
Jinjin Liu ◽  
Ping Zhang ◽  
Zhifeng Chen

In the process of face recognition, face acquisition data is seriously distorted. Many face images collected are blurred or even missing. Faced with so many problems, the traditional image inpainting was based on structure, while the current popular image inpainting method is based on deep convolutional neural network and generative adversarial nets. In this paper, we propose a 3D face image inpainting method based on generative adversarial nets. We identify two parallels of the vector to locate the planer positions. Compared with the previous, the edge information of the missing image is detected, and the edge fuzzy inpainting can achieve better visual match effect. We make the face recognition performance dramatically boost.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Rong Wang

In real-world applications, the image of faces varies with illumination, facial expression, and poses. It seems that more training samples are able to reveal possible images of the faces. Though minimum squared error classification (MSEC) is a widely used method, its applications on face recognition usually suffer from the problem of a limited number of training samples. In this paper, we improve MSEC by using the mirror faces as virtual training samples. We obtained the mirror faces generated from original training samples and put these two kinds of samples into a new set. The face recognition experiments show that our method does obtain high accuracy performance in classification.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Pang Ying Han ◽  
Andrew Teoh Beng Jin ◽  
Lim Heng Siong

Graph-based subspace learning is a class of dimensionality reduction technique in face recognition. The technique reveals the local manifold structure of face data that hidden in the image space via a linear projection. However, the real world face data may be too complex to measure due to both external imaging noises and the intra-class variations of the face images. Hence, features which are extracted by the graph-based technique could be noisy. An appropriate weight should be imposed to the data features for better data discrimination. In this paper, a piecewise weighting function, known as Eigenvector Weighting Function (EWF), is proposed and implemented in two graph based subspace learning techniques, namely Locality Preserving Projection and Neighbourhood Preserving Embedding. Specifically, the computed projection subspace of the learning approach is decomposed into three partitions: a subspace due to intra-class variations, an intrinsic face subspace, and a subspace which is attributed to imaging noises. Projected data features are weighted differently in these subspaces to emphasize the intrinsic face subspace while penalizing the other two subspaces. Experiments on FERET and FRGC databases are conducted to show the promising performance of the proposed technique.


2014 ◽  
Vol 644-650 ◽  
pp. 3943-3946
Author(s):  
Xiao Bin Yu ◽  
Zi Qiao Li ◽  
Wen Qiang Ke ◽  
Rui Peng Li ◽  
Kai Xiong

The technology of face recognition is the media to face images as the identity of the face recognition system.Through the choice of color space and the establishment of skin color model, give a rough detection for the human's image, then use the face Haar features getting more accurate detection.


2015 ◽  
Vol 734 ◽  
pp. 562-567 ◽  
Author(s):  
En Zeng Dong ◽  
Yan Hong Fu ◽  
Ji Gang Tong

This paper proposed a theoretically efficient approach for face recognition based on principal component analysis (PCA) and rotation invariant uniform local binary pattern texture features in order to weaken the effects of varying illumination conditions and facial expressions. Firstly, the rotation invariant uniform LBP operator was adopted to extract the local texture feature of the face images. Then PCA method was used to reduce the dimensionality of the extracted feature and get the eigenfaces. Finally, the nearest distance classification was used to distinguish each face. The method has been accessed on Yale and ATR-Jaffe face databases. Results demonstrate that the proposed method is superior to standard PCA and its recognition rate is higher than the traditional PCA. And the proposed algorithm has strong robustness against the illumination changes, pose, rotation and expressions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhixue Liang

In the contactless delivery scenario, the self-pickup cabinet is an important terminal delivery device, and face recognition is one of the efficient ways to achieve contactless access express delivery. In order to effectively recognize face images under unrestricted environments, an unrestricted face recognition algorithm based on transfer learning is proposed in this study. First, the region extraction network of the faster RCNN algorithm is improved to improve the recognition speed of the algorithm. Then, the first transfer learning is applied between the large ImageNet dataset and the face image dataset under restricted conditions. The second transfer learning is applied between face image under restricted conditions and unrestricted face image datasets. Finally, the unrestricted face image is processed by the image enhancement algorithm to increase its similarity with the restricted face image, so that the second transfer learning can be carried out effectively. Experimental results show that the proposed algorithm has better recognition rate and recognition speed on the CASIA-WebFace dataset, FLW dataset, and MegaFace dataset.


2020 ◽  
Vol 8 (5) ◽  
pp. 3220-3229

This article presents a method “Template based pose and illumination invariant face recognition”. We know that pose and Illumination are important variants where we cannot find proper face images for a given query image. As per the literature, previous methods are also not accurately calculating the pose and Illumination variants of a person face image. So we concentrated on pose and Illumination. Our System firstly calculates the face inclination or the pose of the head of a person with various mathematical methods. Then Our System removes the Illumination from the image using a Gabor phase based illumination invariant extraction strategy. In this strategy, the system normalizes changing light on face images, which can decrease the impact of fluctuating Illumination somewhat. Furthermore, a lot of 2D genuine Gabor wavelet with various orientations is utilized for image change, and numerous Gabor coefficients are consolidated into one entire in thinking about spectrum and phase. Finally, the light invariant is acquired by separating the phase feature from the consolidated coefficients. Then after that, the obtained Pose and illumination invariant images are convolved with Gabor filters to obtain Gabor images. Then templates will be extracted from these Gabor images and one template average is generated. Then similarity measure will be performed between query image template average and database images template averages. Finally the most similar images will be displayed to the user. Exploratory results on PubFig database, Yale B and CMU PIE face databases show that our technique got a critical improvement over other related strategies for face recognition under enormous pose and light variation conditions.


Sign in / Sign up

Export Citation Format

Share Document