scholarly journals Rapid Fault Diagnosis Method of Elevator System Based on Multiattribute Decision Making

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dapeng Niu ◽  
Chenshu Qi ◽  
Guanghai Li ◽  
Hongru Li ◽  
Hali Pang

Fault tree analysis is often used in elevator fault diagnosis because of its simplicity and reliability. However, the traditional fault tree method has the problems of low efficiency due to ignoring location change of bottom events during troubleshooting. This paper proposes a rapid diagnosis method based on multiattribute decision making to solve the problem. The fault tree of the elevator system is constructed based on expert knowledge and multisource data, and the location-related matrix is constructed according to the complex vertical structure of the elevator. Then, the attributes of bottom events such as the failure probability, search cost, location time cost, and location-related attributes are comprehensively analyzed in this paper. Finally, the TOPSIS method for dynamic attributes is used based on the work above to achieve the optimal troubleshooting sequence of elevator vibration fault. The results show that the proposed method is more efficient when compared to the optimal troubleshooting sequence obtained by the traditional method.

2013 ◽  
Vol 760-762 ◽  
pp. 1062-1066 ◽  
Author(s):  
Xiang Gao ◽  
Tao Zhang ◽  
Hong Jin Liu ◽  
Jian Gong

In this paper, a fault diagnosis method for spacecraft based on telemetry data mining and fault tree analysis was proposed. Decision trees are constructed from the history telemetry data of the spacecraft, and are used to classify the current data which is unknown whether it is fault. If there is a fault, the fault tree method will be used to analyze the fault reason and the impact on the spacecraft system. This method can effectively solve the problem of diagnostic knowledge acquisition. We design and construct a fault diagnosis expert system for spacecraft based on this diagnosis method. An experiment is presented to prove the effectiveness and practicality of the expert system.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mingxing Jia ◽  
Zhiheng Pan ◽  
Guanghai Li ◽  
Chunhua Chen ◽  
Chen Wang

There are many reasons for escalator reversal failure, and the reasons are distributed in different locations. It is difficult to locate the specific location of the fault in the actual fault troubleshooting. At the same time, the information related to the failure is not used in the troubleshooting, so there is a problem of inefficient troubleshooting. To this end, this paper proposes a multiattribute decision-making method that integrates dynamic information and gives the optimal troubleshooting order to improve the efficiency of the troubleshooting. First of all, according to the structure of the escalator components, the escalator reversal fault tree is established. Secondly, a static decision matrix is established by comprehensively considering the failure probability, search cost, and influence degree of the bottom event of the fault tree. Finally, the influence matrix of information on each attribute is given by the dynamic information obtained in troubleshooting, the static decision fusion influence matrix determines the dynamic decision matrix, the dynamic decision matrix is weighted and normalized, and the Technique for Order Preference by Similarity to Ideal Solution is used to determine the optimal troubleshooting order. Taking the reversal failure of a certain type of escalators as an example, the method of multiattribute decision-making of fusion dynamic information is used to shorten the troubleshooting time, improve the efficiency of troubleshooting, and verify the effectiveness of this method.


Author(s):  
Zhenxu Zhou ◽  
Hao Nie ◽  
Qin Zhang

Fault tree analysis (FTA) has been proven to be a very important tool and has been successfully applied to safety/reliability studies in nuclear, chemical, military, space industries/systems. Hitherto, several useful and popular FTA software/program packages have been developed, like CAFTA+, FAUNET, RiskSpectrum, SAPHIRE, RiskA etc. Minimum Cut Set (MCS) method is the most commonly used traditional FTA method. However, it suffers from low efficiency when solving remarkably large fault trees (FTs). To overcome the shortcomings of the traditional method, several new techniques are proposed such as Binary Decision Diagram (BDD), Zero-suppressed Binary Decision Diagram, (ZBDD) Petri Net (PN), Bayesian Network (BN) and Dynamic Uncertain Causality Graph (DUCG). DUCG is a newly presented Probabilistic Graphic Model to deal with systems with dynamics, uncertainties and logic cycles. DUCG is a good choice to analyze large FTs, in our previous papers, we have proved that any FT can be mapped into a DUCG graph and additional modeling and analytical power can be achieved. DeRisk is a DUCG embedded risk analysis program package written in C# for FTA and is designed as a powerful tool to assist reliability engineers. In this paper, the design schema and the main algorithms of DeRisk are introduced. DeRisk contains five parts: (1) A Graphical User Interface (GUI) Module which interacts with users; (2) A Preprocessing Module which preprocesses FTs (3) An Input Module which allows user to input necessary data by file or by command line; (4) A Calculation Module which offers qualitative/quantitative analysis; (5) An Output Module which outputs the results required by users. Some illustrative examples are used to verify the correctness and effectiveness of DeRisk.


Author(s):  
Christoph Läsche ◽  
Jan Pinkowski ◽  
Sebastian Gerwinn ◽  
Rainer Droste ◽  
Axel Hahn

Safety and dependability are major design objectives for offshore operations such as the construction of wind farms or oil and gas exploration. Today processes and related risks are typically described informally and process specification are neither reusable nor suitable for risk assessment. Here, we propose to use a specification language for processes. We integrate this specification language in a generic modeling approach in combination with an analysis tool and a tool to construct health, safety and environment (HSE) plans — a mandatory document for granting a construction/operation permit. Specifically, for each planned scenario a process is modeled, describing the detailed operation of the involved actors as well as the interaction with resources and environmental conditions. We enrich this process model with hazardous events which is facilitated by integration with an offshore operation generic hazard list, thereby giving access to expert knowledge for the specific situation to be planned. This in turn allows us to perform an automatic quantitative risk assessment using fault tree analysis. We exemplify our approach on a standard offshore operation of personnel transfer from an offshore building to another naval unit by modeling, annotating with hazards, performing the fault-tree analysis, and finally generating HSE plans.


2005 ◽  
Vol 10 (7) ◽  
pp. 531-542 ◽  
Author(s):  
J.-R. Chang ◽  
K.-H. Chang ◽  
S.-H. Liao ◽  
C.-H. Cheng

2011 ◽  
Vol 204-210 ◽  
pp. 1994-1997 ◽  
Author(s):  
Zheng Yao ◽  
Zhao Hua Wang

The complexity of modern equipment is higher than before, thus it cannot meet the need of speedy fault diagnosis to use single diagnosis pattern. According to these troubles, a fault tree was introduced to analyze fault information of gear. Fault tree analysis is a logical and diagrammatic method to evaluate the probability of an accident resulting from sequences and combinations of faults and failure events. In conventional fault tree analysis, probabilities and consequences are treated as exact values. In many engineering applications, however, it is difficult to evaluate the probabilities and consequences from past experiences, so a fuzzy set defined in probability is proposed. The principle of fuzzy diagnosis is taken as basics and symptom sets and faults sets are extracted through fault tree analysis. Experiments show this method is effective for fault diagnosis of gear.


Sign in / Sign up

Export Citation Format

Share Document