scholarly journals Optimized Production of Biodiesel Using Internet of Things Sensed Temperature with Hybrid Particle Swarm Optimization

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
G. Loganathan ◽  
M. Kannan

Biofuel production offers a non-fossil fuel that can be utilized in modern engines without any redesign. Regardless of receiving rising attention, many researchers have explored microalgae-based biofuel production and found biodiesel production is cost-effective compared to petroleum-centered conventional fuels. The primary reason is that the lipid accumulation of microalgae is possible. An efficient technique is proposed for optimized biodiesel manufacturing with microalgae through an IoT device with the hybrid particle swarm optimization (HPSO) algorithm for elapsing such drawbacks. First, the component of biodiesel is determined. Then, from the components, the temperature value is sensed through the IoT device. Based on the obtained temperature, the reaction parameters are optimized with HPSO to increase productivity and reduce cost. Finally, we observed performance and comparative analysis. The experimental results contrasted with the existent particle swarm optimization (PSO) and genetic algorithm (GA) concerning iteration’s temperature, concentration, production, and fitness. The present HPSO algorithm has differed from the existing PSO and GA concerning IoT sensed temperature and production function. Fitness value and instance concentration are the performance parameters. It varies based on the iteration values. Thus, the proposed optimized biodiesel production is advanced when weighed down with the top-notch methods.

Sign in / Sign up

Export Citation Format

Share Document